- blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
 - log_extensionTrueUse a logarithmic extension for low saturation to avoid capillary pressure going to infinity. Default is true. Set to false if your capillary pressure depends on spatially-dependent variables other than saturation, as the log-extension C++ code for this case has yet to be implemented
Default:True
C++ Type:bool
Controllable:No
Description:Use a logarithmic extension for low saturation to avoid capillary pressure going to infinity. Default is true. Set to false if your capillary pressure depends on spatially-dependent variables other than saturation, as the log-extension C++ code for this case has yet to be implemented
 - pc0Constant capillary pressure (Pa). Default is 0
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Constant capillary pressure (Pa). Default is 0
 - pc_max1e+09Maximum capillary pressure (Pa). Must be > 0. Default is 1e9
Default:1e+09
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Maximum capillary pressure (Pa). Must be > 0. Default is 1e9
 - sat_lr0Liquid residual saturation. Must be between 0 and 1. Default is 0
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Liquid residual saturation. Must be between 0 and 1. Default is 0
 
PorousFlowCapillaryPressureConst
Constant capillary pressure
This UserObject provides a constant capillary pressure This formulation is useful for testing purposes.
Input Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
 - execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
 - force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
 - force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
 - force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
 
Execution Scheduling Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
 - seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
 - use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
 
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
 - use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
 
Material Property Retrieval Parameters
Input Files
- (modules/porous_flow/test/tests/jacobian/esbc02.i)
 - (modules/porous_flow/test/tests/fluidstate/brineco2_fv.i)
 - (modules/porous_flow/examples/thm_example/2D_c.i)
 - (modules/porous_flow/test/tests/hysteresis/except16.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D.i)
 - (modules/porous_flow/test/tests/heat_conduction/two_phase_fv.i)
 - (modules/porous_flow/test/tests/recover/theis.i)
 - (modules/porous_flow/test/tests/sinks/s11_act.i)
 - (modules/porous_flow/test/tests/actions/block_restricted_and_not.i)
 - (modules/porous_flow/test/tests/chemistry/precipitation_2phase.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass05.i)
 - (modules/porous_flow/test/tests/numerical_diffusion/no_action.i)
 - (modules/porous_flow/test/tests/dirackernels/hfrompps.i)
 - (modules/porous_flow/test/tests/fluidstate/brineco2_ic.i)
 - (modules/porous_flow/test/tests/actions/addjoiner_exception.i)
 - (modules/porous_flow/test/tests/numerical_diffusion/pffltvd.i)
 - (modules/porous_flow/test/tests/basic_advection/2phase.i)
 - (modules/porous_flow/test/tests/sinks/s11.i)
 - (modules/porous_flow/test/tests/poroperm/except2.i)
 - (modules/porous_flow/test/tests/basic_advection/except2.i)
 - (modules/porous_flow/test/tests/jacobian/diff02.i)
 - (modules/porous_flow/test/tests/jacobian/esbc01.i)
 - (modules/porous_flow/test/tests/poroperm/poro_hm.i)
 - (modules/porous_flow/test/tests/relperm/corey4.i)
 - (modules/porous_flow/test/tests/relperm/corey1.i)
 - (modules/porous_flow/test/tests/heat_advection/except1.i)
 - (modules/porous_flow/test/tests/fluidstate/brineco2.i)
 - (modules/porous_flow/examples/fluidflower/fluidflower.i)
 - (modules/porous_flow/test/tests/relperm/vangenuchten2.i)
 - (modules/porous_flow/test/tests/relperm/vangenuchten1.i)
 - (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_except.i)
 - (modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
 - (modules/porous_flow/test/tests/actions/block_restricted_materials.i)
 - (modules/porous_flow/test/tests/fluidstate/brineco2_hightemp.i)
 - (modules/porous_flow/test/tests/jacobian/fflux15.i)
 - (modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
 - (modules/porous_flow/test/tests/jacobian/fflux14.i)
 - (modules/porous_flow/test/tests/relperm/corey2.i)
 - (modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_angle.i)
 - (modules/porous_flow/test/tests/relperm/brooks_corey1.i)
 - (modules/porous_flow/test/tests/actions/addjoiner.i)
 - (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower.i)
 - (modules/porous_flow/test/tests/gravity/grav02e_fv.i)
 - (modules/porous_flow/test/tests/fluidstate/theis.i)
 - (modules/porous_flow/test/tests/fluidstate/waterncg_nonisothermal.i)
 - (modules/porous_flow/test/tests/poroperm/poro_hm_func.i)
 - (modules/porous_flow/examples/lava_lamp/1phase_convection.i)
 - (modules/porous_flow/examples/co2_intercomparison/1Dradial/properties.i)
 - (modules/porous_flow/examples/thm_example/2D.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp.i)
 - (modules/porous_flow/test/tests/recover/pffltvd.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_3D.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_fv.i)
 - (modules/porous_flow/test/tests/relperm/corey3.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_trimesh.i)
 - (modules/porous_flow/examples/lava_lamp/2phase_convection.i)
 - (modules/porous_flow/test/tests/dirackernels/theis3.i)
 - (modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
 - (modules/porous_flow/test/tests/relperm/unity.i)
 - (modules/porous_flow/test/tests/heat_conduction/two_phase.i)
 - (modules/porous_flow/test/tests/poroperm/poro_thm.i)
 - (modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
 - (modules/porous_flow/test/tests/chemistry/dissolution_limited_2phase.i)
 - (modules/porous_flow/test/tests/poroperm/poro_tm.i)
 - (modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass06.i)
 - (modules/porous_flow/test/tests/jacobian/basic_advection1.i)
 - (modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_2D.i)
 - (modules/porous_flow/test/tests/basic_advection/except1.i)
 - (modules/porous_flow/test/tests/jacobian/diff03.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D_adaptivity.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D.i)
 - (modules/porous_flow/test/tests/sinks/s12.i)
 - (modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
 - (modules/porous_flow/test/tests/fluidstate/waterncg.i)
 - (modules/porous_flow/test/tests/fluidstate/waterncg_ic.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_KT.i)
 - (modules/porous_flow/test/tests/basic_advection/1phase.i)
 - (modules/porous_flow/test/tests/flux_limited_TVD_pflow/jacobian_01.i)
 - (modules/porous_flow/test/tests/gravity/grav02e.i)
 - (modules/porous_flow/test/tests/relperm/brooks_corey2.i)
 - (modules/porous_flow/test/tests/poroperm/except1.i)
 
(modules/porous_flow/test/tests/jacobian/esbc02.i)
# Tests the Jacobian of PorousFlowEnthalpySink when pressure
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  at_nodes = true
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0.1
  []
[]
[Variables]
  [pp]
    initial_condition = 1
  []
  [temp]
    initial_condition = 2
  []
[]
[AuxVariables]
  [pressure]
  []
[]
[Kernels]
  [mass0]
    type = TimeDerivative
    variable = pp
  []
  [heat_conduction]
    type = TimeDerivative
    variable = temp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = IdealGasFluidProperties
  []
[]
[Materials]
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
[]
[BCs]
  [left]
    type = PorousFlowEnthalpySink
    variable = temp
    boundary = left
    porepressure_var = pressure
    T_in = 300
    fp = simple_fluid
    flux_function = -23
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.1
  num_steps = 1
  nl_rel_tol = 1E-12
  nl_abs_tol = 1E-12
  petsc_options_iname = '-snes_test_err'
  petsc_options_value = '1e-1'
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_fv.i)
# Tests correct calculation of properties in PorousFlowBrineCO2 using FV variables
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  temperature = 30
[]
[Variables]
  [pg]
    type = MooseVariableFVReal
    initial_condition = 20e6
  []
  [z]
    type = MooseVariableFVReal
    initial_condition = 0.2
  []
[]
[AuxVariables]
  [xnacl]
    type = MooseVariableFVReal
    initial_condition = 0.1
  []
  [pressure_gas]
    type = MooseVariableFVReal
  []
  [pressure_water]
    type = MooseVariableFVReal
  []
  [saturation_gas]
    type = MooseVariableFVReal
  []
  [saturation_water]
    type = MooseVariableFVReal
  []
  [density_water]
    type = MooseVariableFVReal
  []
  [density_gas]
    type = MooseVariableFVReal
  []
  [viscosity_water]
    type = MooseVariableFVReal
  []
  [viscosity_gas]
    type = MooseVariableFVReal
  []
  [enthalpy_water]
    type = MooseVariableFVReal
  []
  [enthalpy_gas]
    type = MooseVariableFVReal
  []
  [internal_energy_water]
    type = MooseVariableFVReal
  []
  [internal_energy_gas]
    type = MooseVariableFVReal
  []
  [x0_water]
    type = MooseVariableFVReal
  []
  [x0_gas]
    type = MooseVariableFVReal
  []
  [x1_water]
    type = MooseVariableFVReal
  []
  [x1_gas]
    type = MooseVariableFVReal
  []
[]
[AuxKernels]
  [pressure_water]
    type = ADPorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = 'timestep_end'
  []
  [pressure_gas]
    type = ADPorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = 'timestep_end'
  []
  [saturation_water]
    type = ADPorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = 'timestep_end'
  []
  [saturation_gas]
    type = ADPorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'timestep_end'
  []
  [density_water]
    type = ADPorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = 'timestep_end'
  []
  [density_gas]
    type = ADPorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = 'timestep_end'
  []
  [viscosity_water]
    type = ADPorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = 'timestep_end'
  []
  [viscosity_gas]
    type = ADPorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = 'timestep_end'
  []
  [enthalpy_water]
    type = ADPorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = 'timestep_end'
  []
  [enthalpy_gas]
    type = ADPorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = 'timestep_end'
  []
  [internal_energy_water]
    type = ADPorousFlowPropertyAux
    variable = internal_energy_water
    property = internal_energy
    phase = 0
    execute_on = 'timestep_end'
  []
  [internal_energy_gas]
    type = ADPorousFlowPropertyAux
    variable = internal_energy_gas
    property = internal_energy
    phase = 1
    execute_on = 'timestep_end'
  []
  [x1_water]
    type = ADPorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [x1_gas]
    type = ADPorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [x0_water]
    type = ADPorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = 'timestep_end'
  []
  [x0_gas]
    type = ADPorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = 'timestep_end'
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    variable = pg
    fluid_component = 0
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pg z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pg
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
    execute_on = 'timestep_end'
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
    execute_on = 'timestep_end'
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
    execute_on = 'timestep_end'
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
    execute_on = 'timestep_end'
  []
  [enthalpy_water]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_water
    execute_on = 'timestep_end'
  []
  [enthalpy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_gas
    execute_on = 'timestep_end'
  []
  [internal_energy_water]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_water
    execute_on = 'timestep_end'
  []
  [internal_energy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_gas
    execute_on = 'timestep_end'
  []
  [x1_water]
    type = ElementIntegralVariablePostprocessor
    variable = x1_water
    execute_on = 'timestep_end'
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
    execute_on = 'timestep_end'
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
    execute_on = 'timestep_end'
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
    execute_on = 'timestep_end'
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
    execute_on = 'timestep_end'
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
    execute_on = 'timestep_end'
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
    execute_on = 'timestep_end'
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
    execute_on = 'timestep_end'
  []
  [x0mass]
    type = FVPorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [x1mass]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Outputs]
  csv = true
  file_base = brineco2
  execute_on = 'timestep_end'
  perf_graph = false
[]
(modules/porous_flow/examples/thm_example/2D_c.i)
# Two phase, temperature-dependent, with mechanics and chemistry, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2000
  bias_x = 1.003
  xmin = 0.1
  xmax = 5000
  ny = 1
  ymin = 0
  ymax = 11
  coord_type = RZ
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  biot_coefficient = 1.0
[]
[Variables]
  [pwater]
    initial_condition = 18.3e6
  []
  [sgas]
    initial_condition = 0.0
  []
  [temp]
    initial_condition = 358
  []
  [disp_r]
  []
[]
[AuxVariables]
  [rate]
  []
  [disp_z]
  []
  [massfrac_ph0_sp0]
    initial_condition = 1 # all H20 in phase=0
  []
  [massfrac_ph1_sp0]
    initial_condition = 0 # no H2O in phase=1
  []
  [pgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [stress_rr]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_tt]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [mineral_conc_m3_per_m3]
    family = MONOMIAL
    order = CONSTANT
    initial_condition = 0.1
  []
  [eqm_const]
    initial_condition = 0.0
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = temp
  []
  [conduction]
    type = PorousFlowExponentialDecay
    use_displaced_mesh = false
    variable = temp
    reference = 358
    rate = rate
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = temp
    eigenstrain_names = thermal_contribution
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxKernels]
  [rate]
    type = FunctionAux
    variable = rate
    execute_on = timestep_begin
    function = decay_rate
  []
  [pgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [stress_rr]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_rr
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral_conc_m3_per_m3
  []
  [eqm_const_auxk]
    type = ParsedAux
    variable = eqm_const
    coupled_variables = temp
    expression = '(358 - temp) / (358 - 294)'
  []
  [porosity_auxk]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Functions]
  [decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
    type = ParsedFunction
    expression = 'sqrt(10056886.914/t)/11.0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pwater sgas disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 970.0
    viscosity = 0.3394e-3
    cv = 4149.0
    cp = 4149.0
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
  [co2]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 516.48
    viscosity = 0.0393e-3
    cv = 2920.5
    cp = 2920.5
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
  []
  [gas]
    type = PorousFlowSingleComponentFluid
    fp = co2
    phase = 1
  []
  [porosity_reservoir]
    type = PorousFlowPorosity
    porosity_zero = 0.2
    chemical = true
    reference_chemistry = 0.1
    initial_mineral_concentrations = 0.1
  []
  [permeability_reservoir]
    type = PorousFlowPermeabilityConst
    permeability = '2e-12 0 0  0 0 0  0 0 0'
  []
  [relperm_liquid]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    phase = 0
    s_res = 0.200
    sum_s_res = 0.405
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    s_res = 0.205
    sum_s_res = 0.405
    nw_phase = true
    lambda = 2
  []
  [thermal_conductivity_reservoir]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0 0 0  0 1.320 0  0 0 0'
    wet_thermal_conductivity = '0 0 0  0 3.083 0  0 0 0'
  []
  [internal_energy_reservoir]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2350.0
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    shear_modulus = 6.0E9
    poissons_ratio = 0.2
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution ini_stress'
  []
  [ini_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '-12.8E6 0 0  0 -51.3E6 0  0 0 -12.8E6'
    eigenstrain_name = ini_stress
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = temp
    stress_free_temperature = 358
    thermal_expansion_coeff = 5E-6
    eigenstrain_name = thermal_contribution
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    num_reactions = 1
    primary_concentrations = 1.0 # fixed activity
    equilibrium_constants_as_log10 = true
    equilibrium_constants = eqm_const
    primary_activity_coefficients = 1.0 # fixed activity
    reactions = 1
    kinetic_rate_constant = 1E-6
    molar_volume = 1.0
    specific_reactive_surface_area = 1.0
    activation_energy = 0.0 # no Arrhenius
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = 0.1
  []
  [predis_nodes]
    type = PorousFlowAqueousPreDisChemistry
    at_nodes = true
    num_reactions = 1
    primary_concentrations = 1.0 # fixed activity
    equilibrium_constants_as_log10 = true
    equilibrium_constants = eqm_const
    primary_activity_coefficients = 1.0 # fixed activity
    reactions = 1
    kinetic_rate_constant = 1E-6
    molar_volume = 1.0
    specific_reactive_surface_area = 1.0
    activation_energy = 0.0 # no Arrhenius
  []
  [mineral_conc_nodes]
    type = PorousFlowAqueousPreDisMineral
    at_nodes = true
    initial_concentrations = 0.1
  []
[]
[BCs]
  [outer_pressure_fixed]
    type = DirichletBC
    boundary = right
    value = 18.3e6
    variable = pwater
  []
  [outer_saturation_fixed]
    type = DirichletBC
    boundary = right
    value = 0.0
    variable = sgas
  []
  [outer_temp_fixed]
    type = DirichletBC
    boundary = right
    value = 358
    variable = temp
  []
  [fixed_outer_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = right
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = sgas
    use_mobility = false
    use_relperm = false
    fluid_phase = 1
    flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
  []
  [cold_co2]
    type = DirichletBC
    boundary = left
    variable = temp
    value = 294
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = left
    variable = disp_r
    component = 0
    postprocessor = p_bh # note, this lags
    use_displaced_mesh = false
  []
[]
[Postprocessors]
  [p_bh]
    type = PointValue
    variable = pwater
    point = '0.1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
  [mineral_bh] # mineral concentration (m^3(mineral)/m^3(rock)) at the borehole
    type = PointValue
    variable = mineral_conc_m3_per_m3
    point = '0.1 0 0'
    use_displaced_mesh = false
  []
[]
[VectorPostprocessors]
  [ptsuss]
    type = LineValueSampler
    use_displaced_mesh = false
    start_point = '0.1 0 0'
    end_point = '5000 0 0'
    sort_by = x
    num_points = 50000
    outputs = csv
    variable = 'pwater temp sgas disp_r stress_rr stress_tt mineral_conc_m3_per_m3 porosity'
  []
[]
[Preconditioning]
  active = 'smp'
  [smp]
    type = SMP
    full = true
    #petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E2       1E-5        50'
  []
  [mumps]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
    petsc_options_value = 'gmres      lu       mumps                         NONZERO               1E-5       1E2       50'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1.5768e8
  #dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.1
  []
[]
[Outputs]
  print_linear_residuals = false
  sync_times = '3600 86400 2.592E6 1.5768E8'
  perf_graph = true
  exodus = true
  [csv]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/hysteresis/except16.i)
# Exception test: S_gr_max is too large
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 1
    number_fluid_components = 1
    porous_flow_vars = 'pp'
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Variables]
  [pp]
  []
[]
[Kernels]
  [mass_conservation]
    type = PorousFlowMassTimeDerivative
    variable = pp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [pc_calculator]
    type = PorousFlow1PhaseP
    capillary_pressure = pc
    porepressure = pp
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [relperm_material]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.1
    S_gr_max = 0.9
    m = 0.9
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[AuxVariables]
  [hys_order]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [hys_order]
    type = PorousFlowPropertyAux
    variable = hys_order
    property = hysteresis_order
  []
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 3D version
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  xmin = 0
  xmax = 1
  ny = 4
  ymin = 0
  ymax = 0.5
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0.5 0'
    num_points = 11
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-2
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase_fv.i)
# 2 phase heat conduction, with saturation fixed at 0.5
# Apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [phase0_porepressure]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [phase1_saturation]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
  [temp]
    type = MooseVariableFVReal
    initial_condition = 200
  []
[]
[FVKernels]
  [dummy_p0]
    type = FVTimeKernel
    variable = phase0_porepressure
  []
  [dummy_s1]
    type = FVTimeKernel
    variable = phase1_saturation
  []
  [energy_dot]
    type = FVPorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_conduction]
    type = FVPorousFlowHeatConduction
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 0.4
    thermal_expansion = 0
    cv = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
    temperature = temp
  []
  [thermal_conductivity]
    type = ADPorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0.3 0 0  0 0 0  0 0 0'
    wet_thermal_conductivity = '1.7 0 0  0 0 0  0 0 0'
    exponent = 1.0
    aqueous_phase_number = 1
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = phase0_porepressure
    phase1_saturation = phase1_saturation
    capillary_pressure = pc
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.8
  []
  [rock_heat]
    type = ADPorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 0.25
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    boundary = left
    value = 300
    variable = temp
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E1
  end_time = 1E2
[]
[Postprocessors]
  [t005]
    type = PointValue
    variable = temp
    point = '5 0 0'
    execute_on = 'initial timestep_end'
  []
  [t015]
    type = PointValue
    variable = temp
    point = '15 0 0'
    execute_on = 'initial timestep_end'
  []
  [t025]
    type = PointValue
    variable = temp
    point = '25 0 0'
    execute_on = 'initial timestep_end'
  []
  [t035]
    type = PointValue
    variable = temp
    point = '35 0 0'
    execute_on = 'initial timestep_end'
  []
  [t045]
    type = PointValue
    variable = temp
    point = '45 0 0'
    execute_on = 'initial timestep_end'
  []
  [t055]
    type = PointValue
    variable = temp
    point = '55 0 0'
    execute_on = 'initial timestep_end'
  []
  [t065]
    type = PointValue
    variable = temp
    point = '65 0 0'
    execute_on = 'initial timestep_end'
  []
  [t075]
    type = PointValue
    variable = temp
    point = '75 0 0'
    execute_on = 'initial timestep_end'
  []
  [t085]
    type = PointValue
    variable = temp
    point = '85 0 0'
    execute_on = 'initial timestep_end'
  []
  [t095]
    type = PointValue
    variable = temp
    point = '95 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = two_phase_fv
  csv = true
[]
(modules/porous_flow/test/tests/recover/theis.i)
# Tests that PorousFlow can successfully recover using a checkpoint file.
# This test contains stateful material properties, adaptivity and integrated
# boundary conditions with nodal-sized materials.
#
# This test file is run three times:
# 1) The full input file is run to completion
# 2) The input file is run for half the time and checkpointing is included
# 3) The input file is run in recovery using the checkpoint data
#
# The final output of test 3 is compared to the final output of test 1 to verify
# that recovery was successful.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 20
    xmax = 100
    bias_x = 1.05
  []
  coord_type = RZ
  rz_coord_axis = Y
  # To get consistent ordering of results with distributed meshes
  allow_renumbering = false
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Adaptivity]
  marker = marker
  max_h_level = 4
  [Indicators]
    [front]
      type = GradientJumpIndicator
      variable = zi
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = front
      refine = 0.8
      coarsen = 0.2
    []
  []
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [aquifer]
    type = PorousFlowPiecewiseLinearSink
    variable = pgas
    boundary = right
    pt_vals = '0 1e8'
    multipliers = '0 1e8'
    flux_function = 1e-6
    PT_shift = 20e6
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 2e2
  dt = 50
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'pgas zi'
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/sinks/s11_act.i)
# Test that using PorousFlowSinkBC we get the same answer as in s11.i
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 2
  ny = 2
  nz = 2
  xmin = 0
  xmax = 10
  ymin = 0
  ymax = 10
  zmin = 0
  zmax = 10
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0.1
  []
[]
[Variables]
  [pp]
    initial_condition = 1
  []
  [temp]
    initial_condition = 2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [heat_conduction]
    type = TimeDerivative
    variable = temp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 10
    thermal_expansion = 0
    viscosity = 11
  []
[]
[Materials]
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.125
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
[]
[Modules]
  [PorousFlow]
    [BCs]
      [left]
        type = PorousFlowSinkBC
        boundary = left
        fluid_phase = 0
        T_in = 300
        fp = simple_fluid
        flux_function = -1
      []
    []
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.25
  end_time = 1
  nl_rel_tol = 1E-12
  nl_abs_tol = 1E-12
[]
[Outputs]
  file_base = s11
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/actions/block_restricted_and_not.i)
# This input file illustrates that the PorousFlow Joiners can correctly join block-restricted Materials, even when one PorousFlow material type (relative permeability and fluid properties in this case) is block-restricted for one phase and not block-restricted for another
[Mesh]
  [gmg]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 10
  []
  [block1]
    type = SubdomainBoundingBoxGenerator
    input = gmg
    block_id = 1
    bottom_left = '3 -1 -1'
    top_right = '6 1 1'
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 p1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Variables]
  [p0]
  []
  [p1]
  []
[]
[Kernels]
  [dot0]
    type = PorousFlowMassTimeDerivative
    variable = p0
    fluid_component = 0
  []
  [dot1]
    type = PorousFlowAdvectiveFlux
    variable = p1
    gravity = '0 0 0'
    fluid_component = 1
  []
[]
[AuxVariables]
  [m0]
  []
  [m1]
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    capillary_pressure = pc
    phase0_porepressure = p0
    phase1_porepressure = p1
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'm0 m1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid10]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
    block = 0
  []
  [simple_fluid11]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
    block = 1
  []
  [porosity0]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 0
  []
  [porosity1]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '0 0 0  0 0 0  0 0 0'
  []
  [relperm00]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
    block = 0
  []
  [relperm01]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
    block = 1
  []
  [relperm1_nonblockrestricted]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/chemistry/precipitation_2phase.i)
# Using a two-phase system (see precipitation.i for the single-phase)
# The saturation and porosity are chosen so that the results are identical to precipitation.i
#
# The precipitation reaction
#
# a <==> mineral
#
# produces "mineral".  Using mineral_density = fluid_density, theta = 1 = eta, the DE is
#
# a' = -(mineral / (porosity * saturation))' = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#
# The following parameters are used
#
# T_ref = 0.5 K
# T = 1 K
# activation_energy = 3 J/mol
# gas_constant = 6 J/(mol K)
# kinetic_rate_at_ref_T = 0.60653 mol/(m^2 s)
# These give rate = 0.60653 * exp(1/2) = 1 mol/(m^2 s)
#
# surf_area = 0.5 m^2/L
# molar_volume = 2 L/mol
# These give rate * surf_area * molar_vol = 1 s^-1
#
# equilibrium_constant = 0.5 (dimensionless)
# primary_activity_coefficient = 2 (dimensionless)
# stoichiometry = 1 (dimensionless)
# This means that 1 - (1 / eqm_const) * (act_coeff * a)^stoi = 1 - 4 a, which is negative for a > 0.25, ie precipitation for a(t=0) > 0.25
#
# The solution of the DE is
# a = eqm_const / act_coeff + (a(t=0) - eqm_const / act_coeff) exp(-rate * surf_area * molar_vol * act_coeff * t / eqm_const)
#   = 0.25 + (a(t=0) - 0.25) exp(-4 * t)
# c = c(t=0) - (a - a(t=0)) * (porosity * saturation)
#
# This test checks that (a + c / (porosity * saturation)) is time-independent, and that a follows the above solution
#
# Aside:
#    The exponential curve is not followed exactly because moose actually solves
#    (a - a_old)/dt = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#    which does not give an exponential exactly, except in the limit dt->0
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[Variables]
  [a]
    initial_condition = 0.9
  []
[]
[AuxVariables]
  [eqm_k]
    initial_condition = 0.5
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [b]
    initial_condition = 0.123
  []
  [ini_mineral_conc]
    initial_condition = 0.2
  []
  [mineral]
    family = MONOMIAL
    order = CONSTANT
  []
  [should_be_static]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral
  []
  [should_be_static]
    type = ParsedAux
    coupled_variables = 'mineral a'
    expression = 'a + mineral / 0.1'
    variable = should_be_static
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [pre_dis]
    type = PorousFlowPreDis
    variable = a
    mineral_density = 1000
    stoichiometry = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = a
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 1
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [mass_frac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'b a'
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    primary_concentrations = a
    num_reactions = 1
    equilibrium_constants = eqm_k
    primary_activity_coefficients = 2
    reactions = 1
    specific_reactive_surface_area = 0.5
    kinetic_rate_constant = 0.6065306597126334
    activation_energy = 3
    molar_volume = 2
    gas_constant = 6
    reference_temperature = 0.5
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = ini_mineral_conc
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.4
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1E-10
  dt = 0.01
  end_time = 1
[]
[Postprocessors]
  [a]
    type = PointValue
    point = '0 0 0'
    variable = a
  []
  [should_be_static]
    type = PointValue
    point = '0 0 0'
    variable = should_be_static
  []
[]
[Outputs]
  time_step_interval = 10
  csv = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    family = MONOMIAL
    order = FIRST
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    family = MONOMIAL
    order = FIRST
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/mass_conservation/mass05.i)
# Checking that the mass postprocessor correctly calculates the mass
# of each component in each phase, as well as the total mass of each
# component in all phases.
# 2phase, 2component, constant porosity
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 2
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 0.3
  []
  [massfrac_ph1_sp0]
    initial_condition = 0.55
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp0_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 0
  []
  [comp0_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 1
  []
  [comp0_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
  []
  [comp0_total_mass2]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [comp1_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 0
  []
  [comp1_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 1
  []
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [comp1_total_mass2]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1e-16
  dt = 1
  end_time = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = mass05
  csv = true
[]
(modules/porous_flow/test/tests/numerical_diffusion/no_action.i)
# Using upwinded and mass-lumped PorousFlow Kernels: this is equivalent of fully_saturated_action.i with stabilization = Full
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = tracer
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = porepressure
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 101
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-1
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/dirackernels/hfrompps.i)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  ny = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pressure]
  []
  [temperature]
    scaling = 1E-6
  []
[]
[ICs]
  [pressure_ic]
    type = ConstantIC
    variable = pressure
    value = 1e6
  []
  [temperature_ic]
    type = ConstantIC
    variable = temperature
    value = 400
  []
[]
[Kernels]
  [P_time_deriv]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pressure
  []
  [P_flux]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pressure
    gravity = '0 -9.8 0'
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
 []
  [heat_conduction]
    type = PorousFlowHeatConduction
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
    gravity = '0 -9.8 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pressure temperature'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[Functions]
  [mass_flux_in_fn]
    type = PiecewiseConstant
    direction = left
    xy_data = '
      0    0
      100  0.1
      300  0
      600  0.1
      1400 0
      1500 0.2'
  []
  [T_in_fn]
    type = PiecewiseLinear
    xy_data = '
      0    400
      600  450'
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    at_nodes = true
  []
  [fluid_props]
    type = PorousFlowSingleComponentFluid
    phase = 0
    fp = simple_fluid
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [fp_mat]
    type = FluidPropertiesMaterialPT
    pressure = pressure
    temperature = temperature
    fp = simple_fluid
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 830.0
    density = 2750
  []
  [thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '2.5 0 0  0 2.5 0  0 0 2.5'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.0E-15 0 0  0 1.0E-15 0  0 0 1.0E-14'
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowPointSourceFromPostprocessor
    variable = pressure
    mass_flux = mass_flux_in
    point = '0.5 0.5 0'
  []
  [source_h]
    type = PorousFlowPointEnthalpySourceFromPostprocessor
    variable = temperature
    mass_flux = mass_flux_in
    point = '0.5 0.5 0'
    T_in = T_in
    pressure = pressure
    fp = simple_fluid
  []
[]
[Preconditioning]
  [preferred]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type'
    petsc_options_value = ' lu     '
  []
[]
[Postprocessors]
  [total_mass]
    type = PorousFlowFluidMass
    execute_on = 'initial timestep_end'
  []
  [total_heat]
    type = PorousFlowHeatEnergy
  []
  [mass_flux_in]
    type = FunctionValuePostprocessor
    function = mass_flux_in_fn
    execute_on = 'initial timestep_end'
  []
  [avg_temp]
    type = ElementAverageValue
    variable = temperature
    execute_on = 'initial timestep_end'
  []
  [T_in]
    type = FunctionValuePostprocessor
    function = T_in_fn
    execute_on = 'initial timestep_end'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1e-14
  dt = 100
  end_time = 2000
[]
[Outputs]
  csv = true
  execute_on = 'initial timestep_end'
  file_base = hfrompps
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_ic.i)
# Tests correct calculation of z (total mass fraction of NCG summed over all
# phases) using the PorousFlowFluidStateIC initial condition. Once z is
# calculated by the initial condition, the thermophysical properties are calculated
# and the resulting gas saturation should be equal to that given in the intial condition
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  temperature_unit = Celsius
[]
[Variables]
  [pgas]
    initial_condition = 1e6
  []
  [z]
  []
[]
[ICs]
  [z]
    type = PorousFlowFluidStateIC
    saturation = 0.5
    gas_porepressure = pgas
    temperature = 50
    variable = z
    xnacl = 0.1
    fluid_state = fs
  []
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    fluid_state = fs
    capillary_pressure = pc
    xnacl = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
    execute_on = 'initial timestep_end'
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
    execute_on = 'initial timestep_end'
  []
  [z]
    type = ElementIntegralVariablePostprocessor
    variable = z
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/actions/addjoiner_exception.i)
# Tests that including a PorousFlowJoiner material throws the
# informative deprecation warning rather than a duplicate material property error
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[Variables]
  [p0]
  []
  [p1]
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [p1]
    type = Diffusion
    variable = p1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    at_nodes = true
  []
  [temperature_qp]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    at_nodes = true
    phase0_porepressure = p0
    phase1_porepressure = p1
    capillary_pressure = pc
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityConst
    at_nodes = true
    kr = 0.5
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    at_nodes = true
    kr = 0.8
    phase = 1
  []
  [relperm]
    type = PorousFlowJoiner
    at_nodes = true
    material_property = PorousFlow_relative_permeability_nodal
  []
[]
[Executioner]
  type = Steady
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 p1'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
(modules/porous_flow/test/tests/numerical_diffusion/pffltvd.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 101
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-2
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/basic_advection/2phase.i)
# Basic advection of u in a 2-phase situation
#
# grad(P) = -2
# density * gravity = 4 * 0.25
# grad(P) - density * gravity = -3
# permeability = 10
# relative permeability = 0.5
# viscosity = 150
# so Darcy velocity = 0.1
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [u]
  []
[]
[AuxVariables]
  [P0]
  []
  [P1]
  []
[]
[ICs]
  [P0]
    type = FunctionIC
    variable = P0
    function = '0'
  []
  [P1]
    type = FunctionIC
    variable = P1
    function = '2*(1-x)'
  []
  [u]
    type = FunctionIC
    variable = u
    function = 'if(x<0.1,1,0)'
  []
[]
[Kernels]
  [u_dot]
    type = TimeDerivative
    variable = u
  []
  [u_advection]
    type = PorousFlowBasicAdvection
    variable = u
    phase = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = ''
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    density0 = 32
    viscosity = 123
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 4
    thermal_expansion = 0
    viscosity = 150.0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = P0
    phase1_porepressure = P1
    capillary_pressure = pc
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '10 0 0 0 10 0 0 0 10'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.5
    phase = 1
  []
  [darcy_velocity]
    type = PorousFlowDarcyVelocityMaterial
    gravity = '0.25 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 1
    variable = u
  []
  [right]
    type = DirichletBC
    boundary = right
    value = 0
    variable = u
  []
[]
[Preconditioning]
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -snes_rtol'
    petsc_options_value = ' lu       1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 5
[]
[Outputs]
  exodus = true
  print_linear_residuals = false
[]
(modules/porous_flow/test/tests/sinks/s11.i)
# Test PorousFlowEnthalpySink boundary condition
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 2
  ny = 2
  nz = 2
  xmin = 0
  xmax = 10
  ymin = 0
  ymax = 10
  zmin = 0
  zmax = 10
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0.1
  []
[]
[Variables]
  [pp]
    initial_condition = 1
  []
  [temp]
    initial_condition = 2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [heat_conduction]
    type = TimeDerivative
    variable = temp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 10
    thermal_expansion = 0
    viscosity = 11
  []
[]
[Materials]
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.125
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
[]
[BCs]
  [left_p]
    type = PorousFlowSink
    variable = pp
    boundary = left
    flux_function = -1
  []
  [left_T]
    # Note, there is no `fluid_phase` or `porepressure_var` prescribed, since they are passed in from the `tests` file
    type = PorousFlowEnthalpySink
    variable = temp
    boundary = left
    T_in = 300
    fp = simple_fluid
    flux_function = -1
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.25
  end_time = 1
  nl_rel_tol = 1E-12
  nl_abs_tol = 1E-12
[]
[Outputs]
  file_base = s11
  [exodus]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/poroperm/except2.i)
# Exception test: fluid=true but no solid_bulk is provided
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
  biot_coefficient = 0.7
[]
[Variables]
  [porepressure]
    initial_condition = 2
  []
  [temperature]
    initial_condition = 4
  []
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
[]
[ICs]
  [disp_x]
    type = FunctionIC
    function = '0.5 * x'
    variable = disp_x
  []
[]
[Kernels]
  [dummy_p]
    type = TimeDerivative
    variable = porepressure
  []
  [dummy_t]
    type = TimeDerivative
    variable = temperature
  []
  [dummy_x]
    type = TimeDerivative
    variable = disp_x
  []
  [dummy_y]
    type = TimeDerivative
    variable = disp_y
  []
  [dummy_z]
    type = TimeDerivative
    variable = disp_z
  []
[]
[AuxVariables]
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Postprocessors]
  [porosity]
    type = PointValue
    variable = porosity
    point = '0 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure temperature'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosity
    mechanical = true
    fluid = true
    thermal = true
    ensure_positive = false
    porosity_zero = 0.5
    thermal_expansion_coeff = 0.5
    reference_porepressure = 3
    reference_temperature = 3.5
  []
[]
[Executioner]
  solve_type = Newton
  type = Transient
  num_steps = 1
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/basic_advection/except2.i)
# PorousFlowDarcyVelocityMaterial attempts to have at_nodes = true
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [u]
  []
[]
[AuxVariables]
  [P]
  []
[]
[ICs]
  [P]
    type = FunctionIC
    variable = P
    function = '2*(1-x)'
  []
  [u]
    type = FunctionIC
    variable = u
    function = 'if(x<0.1,1,0)'
  []
[]
[Kernels]
  [u_dot]
    type = TimeDerivative
    variable = u
  []
  [u_advection]
    type = PorousFlowBasicAdvection
    variable = u
    phase = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = ''
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 4
    thermal_expansion = 0
    viscosity = 150.0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = P
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
  [darcy_velocity]
    type = PorousFlowDarcyVelocityMaterial
    gravity = '0.25 0 0'
    at_nodes = true
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 1
    variable = u
  []
  [right]
    type = DirichletBC
    boundary = right
    value = 0
    variable = u
  []
[]
[Preconditioning]
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -snes_rtol'
    petsc_options_value = ' lu       1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 5
[]
[Outputs]
  exodus = true
  print_linear_residuals = false
[]
(modules/porous_flow/test/tests/jacobian/diff02.i)
# Test the Jacobian of the diffusive component of the PorousFlowDisperiveFlux kernel for two phases.
# By setting disp_long and disp_trans to zero, the purely diffusive component of the flux
# can be isolated. Uses constant tortuosity and diffusion coefficients
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [sgas]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [massfrac1]
  []
[]
[ICs]
  [sgas]
    type = RandomIC
    variable = sgas
    max = 1
    min = 0
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 1
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 1
  []
[]
[Kernels]
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = sgas
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'sgas massfrac0'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 10
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 0.1
  []
[]
[Materials]
  [temp]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = 1
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [diff]
    type = PorousFlowDiffusivityConst
     diffusion_coeff = '1e-2 1e-1 1e-2 1e-1'
     tortuosity = '0.1 0.2'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[Preconditioning]
  active = smp
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/jacobian/esbc01.i)
# Tests the Jacobian of PorousFlowEnthalpySink when pore pressure is specified
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  at_nodes = true
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0.1
  []
[]
[Variables]
  [pp]
    initial_condition = 1
  []
  [temp]
    initial_condition = 2
  []
[]
[Kernels]
  [mass0]
    type = TimeDerivative
    variable = pp
  []
  [heat_conduction]
    type = TimeDerivative
    variable = temp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = IdealGasFluidProperties
  []
[]
[Materials]
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
[]
[BCs]
  [left]
    type = PorousFlowEnthalpySink
    variable = temp
    boundary = left
    fluid_phase = 0
    T_in = 300
    fp = simple_fluid
    flux_function = -23
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.1
  num_steps = 1
  nl_rel_tol = 1E-12
  nl_abs_tol = 1E-12
  petsc_options_iname = '-snes_test_err'
  petsc_options_value = '1e-2'
[]
(modules/porous_flow/test/tests/poroperm/poro_hm.i)
# Test that porosity is correctly calculated.
# Porosity = biot + (phi0 - biot) * exp(-vol_strain + (biot_prime - 1) / solid_bulk * (porepressure - ref_pressure))
# The parameters used are:
# biot = 0.7
# biot_prime = 0.75
# phi0 = 0.5
# vol_strain = 0.5
# solid_bulk = 0.3
# porepressure = 2
# ref_pressure = 3
# which yield porosity = 0.420877515
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
  biot_coefficient = 0.7
[]
[Variables]
  [porepressure]
    initial_condition = 2
  []
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
[]
[ICs]
  [disp_x]
    type = FunctionIC
    function = '0.5 * x'
    variable = disp_x
  []
[]
[Kernels]
  [dummy_p]
    type = TimeDerivative
    variable = porepressure
  []
  [dummy_x]
    type = TimeDerivative
    variable = disp_x
  []
  [dummy_y]
    type = TimeDerivative
    variable = disp_y
  []
  [dummy_z]
    type = TimeDerivative
    variable = disp_z
  []
[]
[AuxVariables]
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Postprocessors]
  [porosity]
    type = PointValue
    variable = porosity
    point = '0 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 3
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [total_strain]
    type = ComputeSmallStrain
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    ensure_positive = false
    porosity_zero = 0.5
    solid_bulk = 0.3
    reference_porepressure = 3
    biot_coefficient_prime = 0.75
  []
[]
[Executioner]
  solve_type = Newton
  type = Transient
  num_steps = 1
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/relperm/corey4.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
    family = LAGRANGE
    order = FIRST
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    scaling = 0.1
    phase = 0
    n = 2
    s_res = 0.2
    sum_s_res = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    scaling = 10.0
    phase = 1
    n = 2
    s_res = 0.3
    sum_s_res = 0.5
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/relperm/corey1.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Corey exponent n = 1 for both phases (linear residual saturation)
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 1
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 1
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/heat_advection/except1.i)
# Exception testing: cannot use PorousFlowFullySaturatedUpwindHeatAdvection with != 1 phase
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
  []
  [ppgas]
  []
  [temp]
  []
[]
[Kernels]
  [dummy1]
    type = Diffusion
    variable = ppwater
  []
  [dummy2]
    type = Diffusion
    variable = ppgas
  []
  [advection]
    type = PorousFlowFullySaturatedUpwindHeatAdvection
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater ppgas temp'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = ppwater
    phase1_porepressure = ppgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.1 0 0 0 2 0 0 0 3'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  num_steps = 1
[]
(modules/porous_flow/test/tests/fluidstate/brineco2.i)
# Tests correct calculation of properties in PorousFlowBrineCO2
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  temperature = 30
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [z]
     initial_condition = 0.2
  []
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.1
  []
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [pressure_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_water]
    type = PorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = timestep_end
  []
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [enthalpy_water]
    type = PorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = timestep_end
  []
  [enthalpy_gas]
    type = PorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = timestep_end
  []
  [internal_energy_water]
    type = PorousFlowPropertyAux
    variable = internal_energy_water
    property = internal_energy
    phase = 0
    execute_on = timestep_end
  []
  [internal_energy_gas]
    type = PorousFlowPropertyAux
    variable = internal_energy_gas
    property = internal_energy
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [x0_water]
    type = PorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = timestep_end
  []
  [x0_gas]
    type = PorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = NullKernel
    variable = pgas
  []
  [mass1]
    type = NullKernel
    variable = z
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
  []
  [enthalpy_water]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_water
  []
  [enthalpy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_gas
  []
  [internal_energy_water]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_water
  []
  [internal_energy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_gas
  []
  [x1_water]
    type = ElementIntegralVariablePostprocessor
    variable = x1_water
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
  []
  [x0mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [x1mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Outputs]
  csv = true
  file_base = brineco2
  execute_on = 'TIMESTEP_END'
  perf_graph = false
[]
(modules/porous_flow/examples/fluidflower/fluidflower.i)
# FluidFlower International Benchmark study model
# CSIRO 2023
#
# This example can be used to reproduce the results presented by the
# CSIRO team as part of this benchmark study. See
# Green, C., Jackson, S.J., Gunning, J., Wilkins, A. and Ennis-King, J.,
# 2023. Modelling the FluidFlower: Insights from Characterisation and
# Numerical Predictions. Transport in Porous Media.
#
# This example takes a long time to run! The large density contrast
# between the gas phase CO2 and the water makes convergence very hard,
# so small timesteps must be taken during injection.
#
# This example uses a simplified mesh in order to be run during the
# automated testing. To reproduce the results of the benchmark study,
# replace the simple layered input mesh with the one located in the
# large_media submodule.
#
# The mesh file contains:
# - porosity as given by FluidFlower description
# - permeability as given by FluidFlower description
# - subdomain ids for each sand type
#
# The nominal thickness of the FluidFlower tank is 19mm. To keep masses consistent
# with the experiment, porosity and permeability are multiplied by the thickness
thickness = 0.019
#
# Properties associated with each sand type associated with mesh block ids
#
# block 0 - ESF (very fine sand)
sandESF = '0 10 20'
sandESF_pe = 1471.5
sandESF_krg = 0.09
sandESF_swi = 0.32
sandESF_krw = 0.71
sandESF_sgi = 0.14
# block 1 - C - Coarse lower
sandC = '1 21'
sandC_pe = 294.3
sandC_krg = 0.05
sandC_swi = 0.14
sandC_krw = 0.93
sandC_sgi = 0.1
# block 2 - D - Coarse upper
sandD = '2 22'
sandD_pe = 98.1
sandD_krg = 0.02
sandD_swi = 0.12
sandD_krw = 0.95
sandD_sgi = 0.08
# block 3 - E - Very Coarse lower
sandE = '3 13 23'
sandE_pe = 10
sandE_krg = 0.1
sandE_swi = 0.12
sandE_krw = 0.93
sandE_sgi = 0.06
# block 4 - F - Very Coarse upper
sandF = '4 14 24 34'
sandF_pe = 10
sandF_krg = 0.11
sandF_swi = 0.12
sandF_krw = 0.72
sandF_sgi = 0.13
# block 5 - G - Flush Zone
sandG = '5 15 35'
sandG_pe = 10
sandG_krg = 0.16
sandG_swi = 0.1
sandG_krw = 0.75
sandG_sgi = 0.06
# block 6 - Fault 1 - Heterogeneous
fault1 = '6 26'
fault1_pe = 10
fault1_krg = 0.16
fault1_swi = 0.1
fault1_krw = 0.75
fault1_sgi = 0.06
# block 7 - Fault 2 - Impermeable
# Note: this fault has been removed from the mesh (no elements in this region)
# block 8 - Fault 3 - Homogeneous
fault3 = '8'
fault3_pe = 10
fault3_krg = 0.16
fault3_swi = 0.1
fault3_krw = 0.75
fault3_sgi = 0.06
# Top layer
top_layer = '9'
# Boxes A, B an C used to report values (sg, sgr, xco2, etc)
boxA = '10 13 14 15 34 35'
boxB = '20 21 22 23 24 26'
boxC = '34 35'
# Furthermore, the seal sand unit in boxes A and B
seal_boxA = '10'
seal_boxB = '20'
# CO2 injection details:
# CO2 density ~1.8389 kg/m3 at 293.15 K, 1.01325e5 Pa
# Injection in Port (9, 3) for 5 hours.
# Injection in Port (17, 7) for 2:45 hours.
# Injection of 10 ml/min = 0.1666 ml/s = 1.666e-7 m3/s = ~3.06e-7 kg/s.
# Total mass of CO2 injected ~ 8.5g.
inj_rate = 3.06e-7
[Mesh]
  [mesh]
    type = FileMeshGenerator
    file = 'fluidflower_test.e'
    # file = '../../../../large_media/porous_flow/examples/fluidflower/fluidflower.e'
    use_for_exodus_restart = true
  []
[]
[Debug]
  show_var_residual_norms = true
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -9.81 0'
  temperature = temperature
  log_extension = false
[]
[Variables]
  [pgas]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [z]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    scaling = 1e4
  []
[]
[AuxVariables]
  [xnacl]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 0.0055
  []
  [temperature]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_condition = 20
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_from_file_var = porosity
  []
  [porosity_times_thickness]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [permeability]
    family = MONOMIAL
    order = CONSTANT
    fv = true
    initial_from_file_var = permeability
  []
  [permeability_times_thickness]
    family = MONOMIAL
    order = CONSTANT
    fv = true
  []
  [saturation_water]
    family = MONOMIAL
    order = CONSTANT
  []
  [saturation_gas]
    family = MONOMIAL
    order = CONSTANT
  []
  [pressure_water]
    family = MONOMIAL
    order = CONSTANT
  []
  [pc]
    family = MONOMIAL
    order = CONSTANT
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity_times_thickness]
    type = ParsedAux
    variable = porosity_times_thickness
    coupled_variables = porosity
    expression = 'porosity * ${thickness}'
    execute_on = 'initial'
  []
  [permeability_times_thickness]
    type = ParsedAux
    variable = permeability_times_thickness
    coupled_variables = permeability
    expression = 'permeability * ${thickness}'
    execute_on = 'initial'
  []
  [pressure_water]
    type = ADPorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [saturation_water]
    type = ADPorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [saturation_gas]
    type = ADPorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [density_water]
    type = ADPorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [density_gas]
    type = ADPorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [x1_water]
    type = ADPorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [x1_gas]
    type = ADPorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [x0_water]
    type = ADPorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [x0_gas]
    type = ADPorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [pc]
    type = ADPorousFlowPropertyAux
    variable = pc
    property = capillary_pressure
    execute_on = 'initial timestep_end'
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    variable = pgas
    fluid_component = 0
  []
  [diff0]
    type = FVPorousFlowDispersiveFlux
    variable = pgas
    fluid_component = 0
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    variable = z
    fluid_component = 1
  []
  [diff1]
    type = FVPorousFlowDispersiveFlux
    variable = z
    fluid_component = 1
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[DiracKernels]
  [injector1]
    type = ConstantPointSource
    point = '0.9 0.3 0'
    value = ${inj_rate}
    variable = z
  []
  [injector2]
    type = ConstantPointSource
    point = '1.7 0.7 0'
    value = ${inj_rate}
    variable = z
  []
[]
[Controls]
  [injection1]
    type = ConditionalFunctionEnableControl
    enable_objects = 'DiracKernels::injector1'
    conditional_function = injection_schedule1
  []
  [injection2]
    type = ConditionalFunctionEnableControl
    enable_objects = 'DiracKernels::injector2'
    conditional_function = injection_schedule2
  []
[]
[Functions]
  [initial_p]
    type = ParsedFunction
    symbol_names = 'p0 g H rho0'
    symbol_values = '101.325e3 9.81 1.5 1002'
    expression = 'p0 + rho0 * g * (H - y)'
  []
  [injection_schedule1]
    type = ParsedFunction
    expression = 'if(t >= 0 & t <= 1.8e4, 1, 0)'
  []
  [injection_schedule2]
    type = ParsedFunction
    expression = 'if(t >= 8.1e3 & t <= 1.8e4, 1, 0)'
  []
[]
[ICs]
  [p]
    type = FunctionIC
    variable = pgas
    function = initial_p
  []
[]
[FVBCs]
  [pressure_top]
    type = FVPorousFlowAdvectiveFluxBC
    boundary = top
    porepressure_value = 1.01325e5
    variable = pgas
  []
[]
[FluidProperties]
  [water]
    type = Water97FluidProperties
  []
  [watertab]
    type = TabulatedBicubicFluidProperties
    fp = water
    save_file = false
    pressure_min = 1e5
    pressure_max = 1e6
    temperature_min = 290
    temperature_max = 300
    num_p = 20
    num_T = 10
  []
  [co2]
    type = CO2FluidProperties
  []
  [co2tab]
    type = TabulatedBicubicFluidProperties
    fp = co2
    save_file = false
    pressure_min = 1e5
    pressure_max = 1e6
    temperature_min = 290
    temperature_max = 300
    num_p = 20
    num_T = 10
  []
  [brine]
    type = BrineFluidProperties
    water_fp = watertab
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [sandESF_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${sandESF_pe}
    lambda = 2
    block = ${sandESF}
    pc_max = 1e4
    sat_lr = ${sandESF_swi}
  []
  [sandC_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${sandC_pe}
    lambda = 2
    block = ${sandC}
    pc_max = 1e4
    sat_lr = ${sandC_swi}
  []
  [sandD_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${sandD_pe}
    lambda = 2
    block = ${sandD}
    pc_max = 1e4
    sat_lr = ${sandD_swi}
  []
  [sandE_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${sandE_pe}
    lambda = 2
    block = ${sandE}
    pc_max = 1e4
    sat_lr = ${sandE_swi}
  []
  [sandF_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${sandF_pe}
    lambda = 2
    block = ${sandF}
    pc_max = 1e4
    sat_lr = ${sandF_swi}
  []
  [sandG_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${sandG_pe}
    lambda = 2
    block = ${sandG}
    pc_max = 1e4
    sat_lr = ${sandG_swi}
  []
  [fault1_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${fault1_pe}
    lambda = 2
    block = ${fault1}
    pc_max = 1e4
    sat_lr = ${fault1_swi}
  []
  [fault3_pc]
    type = PorousFlowCapillaryPressureBC
    pe = ${fault3_pe}
    lambda = 2
    block = ${fault3}
    pc_max = 1e4
    sat_lr = ${fault3_swi}
  []
  [top_layer_pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
    block =  ${top_layer}
  []
  [sandESF_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = sandESF_pc
  []
  [sandC_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = sandC_pc
  []
  [sandD_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = sandD_pc
  []
  [sandE_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = sandE_pc
  []
  [sandF_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = sandF_pc
  []
  [sandG_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = sandG_pc
  []
  [fault1_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = fault1_pc
  []
  [fault3_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = fault3_pc
  []
  [top_layer_fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2tab
    capillary_pressure = top_layer_pc
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
    temperature = temperature
  []
  [sandESF_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = sandESF_fs
    capillary_pressure = sandESF_pc
    block = ${sandESF}
  []
  [sandC_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = sandC_fs
    capillary_pressure = sandC_pc
    block = ${sandC}
  []
  [sandD_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = sandD_fs
    capillary_pressure = sandD_pc
    block = ${sandD}
  []
  [sandE_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = sandE_fs
    capillary_pressure = sandE_pc
    block = ${sandE}
  []
  [sandF_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = sandF_fs
    capillary_pressure = sandF_pc
    block = ${sandF}
  []
  [sandG_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = sandG_fs
    capillary_pressure = sandG_pc
    block = ${sandG}
  []
  [fault1_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = fault1_fs
    capillary_pressure = fault1_pc
    block = ${fault1}
  []
  [fault3_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = fault3_fs
    capillary_pressure = fault3_pc
    block = ${fault3}
  []
  [top_layer_brineco2]
    type = ADPorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    fluid_state = top_layer_fs
    capillary_pressure = top_layer_pc
    block = ${top_layer}
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = porosity_times_thickness
  []
  [permeability]
    type = ADPorousFlowPermeabilityConstFromVar
    perm_xx = permeability_times_thickness
    perm_yy = permeability_times_thickness
    perm_zz = permeability_times_thickness
  []
  [diffcoeff]
    type = ADPorousFlowDiffusivityConst
    tortuosity = '1 1'
    diffusion_coeff = '2e-9 2e-9 0 0'
  []
  [sandESF_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${sandESF_swi}
    sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
    scaling = ${sandESF_krw}
    block = ${sandESF}
  []
  [sandESF_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${sandESF_sgi}
    sum_s_res = ${fparse sandESF_sgi + sandESF_swi}
    scaling = ${sandESF_krg}
    block = ${sandESF}
  []
  [sandC_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${sandC_swi}
    sum_s_res = ${fparse sandC_sgi + sandC_swi}
    scaling = ${sandC_krw}
    block = ${sandC}
  []
  [sandC_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${sandC_sgi}
    sum_s_res = ${fparse sandC_sgi + sandC_swi}
    scaling = ${sandC_krg}
    block = ${sandC}
  []
  [sandD_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${sandD_swi}
    sum_s_res = ${fparse sandD_sgi + sandD_swi}
    scaling = ${sandD_krw}
    block = ${sandD}
  []
  [sandD_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${sandD_sgi}
    sum_s_res = ${fparse sandD_sgi + sandD_swi}
    scaling = ${sandD_krg}
    block = ${sandD}
  []
  [sandE_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${sandE_swi}
    sum_s_res = ${fparse sandE_sgi + sandE_swi}
    scaling = ${sandE_krw}
    block = ${sandE}
  []
  [sandE_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${sandE_sgi}
    sum_s_res = ${fparse sandE_sgi + sandE_swi}
    scaling = ${sandE_krg}
    block = ${sandE}
  []
  [sandF_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${sandF_swi}
    sum_s_res = ${fparse sandF_sgi + sandF_swi}
    scaling = ${sandF_krw}
    block = ${sandF}
  []
  [sandF_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${sandF_sgi}
    sum_s_res = ${fparse sandF_sgi + sandF_swi}
    scaling = ${sandF_krg}
    block = ${sandF}
  []
  [sandG_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${sandG_swi}
    sum_s_res = ${fparse sandG_sgi + sandG_swi}
    scaling = ${sandG_krw}
    block = ${sandG}
  []
  [sandG_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${sandG_sgi}
    sum_s_res = ${fparse sandG_sgi + sandG_swi}
    scaling = ${sandG_krg}
    block = ${sandG}
  []
  [fault1_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${fault1_swi}
    sum_s_res = ${fparse fault1_sgi + fault1_swi}
    scaling = ${fault1_krw}
    block = ${fault1}
  []
  [fault1_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${fault1_sgi}
    sum_s_res = ${fparse fault1_sgi + fault1_swi}
    scaling = ${fault1_krg}
    block = ${fault1}
  []
  [fault3_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = ${fault3_swi}
    sum_s_res = ${fparse fault3_sgi + fault3_swi}
    scaling = ${fault3_krw}
    block = ${fault3}
  []
  [fault3_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    s_res = ${fault3_sgi}
    sum_s_res = ${fparse fault3_sgi + fault3_swi}
    scaling = ${fault3_krg}
    block = ${fault3}
  []
  [top_layer_relperm0]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    block = ${top_layer}
  []
  [top_layer_relperm1]
    type = ADPorousFlowRelativePermeabilityBC
    phase = 1
    nw_phase = true
    lambda = 2
    block = ${top_layer}
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-ksp_snes_ew'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -sub_pc_factor_shift_type'
    petsc_options_value = 'gmres lu mumps NONZERO'
    # petsc_options_iname = '-ksp_type -pc_type -pc_hypre_type -sub_pc_type -sub_pc_factor_shift_type -sub_pc_factor_levels -ksp_gmres_restart'
    # petsc_options_value = 'gmres hypre boomeramg lu NONZERO 4 301'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dtmax = 60
  start_time = 0
  end_time = 4.32e5
  nl_rel_tol = 1e-6
  nl_abs_tol = 1e-8
  nl_max_its = 15
  l_tol = 1e-5
  l_abs_tol = 1e-8
  # line_search = none # Can be a useful option for this problem
  [TimeSteppers]
    [time]
      type = FunctionDT
      growth_factor = 2
      cutback_factor_at_failure = 0.5
      function = 'if(t<1.8e4, 2, if(t<3.6e4, 20, 60))'
    []
  []
[]
[Postprocessors]
  [p_5_3]
    type = PointValue
    variable = pgas
    point = '0.5 0.3 0'
    execute_on = 'initial timestep_end'
  []
  [p_5_3_w]
    type = PointValue
    variable = pressure_water
    point = '0.5 0.3 0'
    execute_on = 'initial timestep_end'
  []
  [p_5_7]
    type = PointValue
    variable = pgas
    point = '0.5 0.7 0'
    execute_on = 'initial timestep_end'
  []
  [p_5_7_w]
    type = PointValue
    variable = pressure_water
    point = '0.5 0.7 0'
    execute_on = 'initial timestep_end'
  []
  [p_9_3]
    type = PointValue
    variable = pgas
    point = '0.9 0.3 0'
    execute_on = 'initial timestep_end'
  []
  [p_9_3_w]
    type = PointValue
    variable = pressure_water
    point = '0.9 0.3 0'
    execute_on = 'initial timestep_end'
  []
  [p_15_5]
    type = PointValue
    variable = pgas
    point = '1.5 0.5 0'
    execute_on = 'initial timestep_end'
  []
  [p_15_5_w]
    type = PointValue
    variable = pressure_water
    point = '1.5 0.5 0'
    execute_on = 'initial timestep_end'
  []
  [p_17_7]
    type = PointValue
    variable = pgas
    point = '1.7 0.7 0'
    execute_on = 'initial timestep_end'
  []
  [p_17_7_w]
    type = PointValue
    variable = pressure_water
    point = '1.7 0.7 0'
    execute_on = 'initial timestep_end'
  []
  [p_17_11]
    type = PointValue
    variable = pgas
    point = '1.7 1.1 0'
    execute_on = 'initial timestep_end'
  []
  [p_17_11_w]
    type = PointValue
    variable = pressure_water
    point = '1.7 1.1 0'
    execute_on = 'initial timestep_end'
  []
  [x0mass]
    type = FVPorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
    execute_on = 'initial timestep_end'
  []
  [x1mass]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
    execute_on = 'initial timestep_end'
  []
  [x1gas]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '1'
    execute_on = 'initial timestep_end'
  []
  [boxA]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
    block = ${boxA}
    execute_on = 'initial timestep_end'
  []
  [imm_A_sandESF]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandESF_sgi}
    block = 10
    execute_on = 'initial timestep_end'
  []
  [imm_A_sandE]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandE_sgi}
    block = 13
    execute_on = 'initial timestep_end'
  []
  [imm_A_sandF]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandF_sgi}
    block = '14 34'
    execute_on = 'initial timestep_end'
  []
  [imm_A_sandG]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandG_sgi}
    block = '15 35'
    execute_on = 'initial timestep_end'
  []
  [imm_A]
    type = LinearCombinationPostprocessor
    pp_names = 'imm_A_sandESF imm_A_sandE imm_A_sandF imm_A_sandG'
    pp_coefs = '1 1 1 1'
    execute_on = 'initial timestep_end'
  []
  [diss_A]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 0
    block = ${boxA}
    execute_on = 'initial timestep_end'
  []
  [seal_A]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
    block = ${seal_boxA}
    execute_on = 'initial timestep_end'
  []
  [boxB]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
    block = ${boxB}
    execute_on = 'initial timestep_end'
  []
  [imm_B_sandESF]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandESF_sgi}
    block = 20
    execute_on = 'initial timestep_end'
  []
  [imm_B_sandC]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandC_sgi}
    block = 21
    execute_on = 'initial timestep_end'
  []
  [imm_B_sandD]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandD_sgi}
    block = 22
    execute_on = 'initial timestep_end'
  []
  [imm_B_sandE]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandE_sgi}
    block = 23
    execute_on = 'initial timestep_end'
  []
  [imm_B_sandF]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${sandF_sgi}
    block = 24
    execute_on = 'initial timestep_end'
  []
  [imm_B_fault1]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = ${fault1_sgi}
    block = 26
    execute_on = 'initial timestep_end'
  []
  [imm_B]
    type = LinearCombinationPostprocessor
    pp_names = 'imm_B_sandESF imm_B_sandC imm_B_sandD imm_B_sandE imm_B_sandF imm_B_fault1'
    pp_coefs = '1 1 1 1 1 1'
    execute_on = 'initial timestep_end'
  []
  [diss_B]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = 0
    block = ${boxB}
    execute_on = 'initial timestep_end'
  []
  [seal_B]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
    block = ${seal_boxB}
    execute_on = 'initial timestep_end'
  []
  [boxC]
    type = FVPorousFlowFluidMass
    fluid_component = 1
    phase = '0'
    block = ${boxC}
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  # exodus = true
  [csv]
     type = CSV
  []
[]
(modules/porous_flow/test/tests/relperm/vangenuchten2.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.4 for both phases
# Phase 0 residual saturation s0r = 0.1
# Phase 1 residual saturation s1r = 0.2
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.4
    s_res = 0.1
    sum_s_res = 0.3
  []
  [kr1]
    type = PorousFlowRelativePermeabilityVG
    phase = 1
    m = 0.4
    s_res = 0.2
    sum_s_res = 0.3
    wetting = false
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-7
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/relperm/vangenuchten1.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityVG
    phase = 1
    m = 0.5
    wetting = false
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-7
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_except.i)
# Exception testing for PorousFlowDarcyVelocityComponentLowerDimensional
# Checking that an error is produced if the AuxVariable is not defined only on
# lower-dimensional elements
[Mesh]
  type = FileMesh
  file = fractured_block.e
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '1 0.5 0.2'
[]
[Variables]
  [pp]
  []
[]
[Kernels]
  [dummy]
    type = TimeDerivative
    variable = pp
  []
[]
[AuxVariables]
  [fracture_vel_x]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [fracture_vel_x]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_x
    component = x
    fluid_phase = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1E16
    viscosity = 10
    density0 = 2
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Executioner]
  type = Transient
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/fluidstate/theis_tabulated.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
# Note: this test is the same as theis.i, but uses the tabulated version of the CO2FluidProperties
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 80
  xmax = 200
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = tabulated
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [tabulated]
    type = TabulatedBicubicFluidProperties
    fp = co2
    fluid_property_file = fluid_properties.csv
    # We try to avoid using both, but some properties are not implemented in the tabulation
    allow_fp_and_tabulation = true
    # Test was design prior to bounds check
    error_on_out_of_bounds = false
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = fluid_properties.csv
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 8e2
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 2
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    start_point = '0 0 0'
    end_point = '200 0 0'
    num_points = 1000
    variable = 'pgas zi x1 saturation_gas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '1 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '1 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '1 0 0'
    variable = zi
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '1 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '1 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [csvout]
    type = CSV
    file_base = theis_tabulated_csvout
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/actions/block_restricted_materials.i)
# Tests that the actions to automatically add PorousFlowJoiner's and the correct
# qp or nodal version of each material work as expected when a material is block
# restricted. Tests both phase dependent properties (like relative permeability)
# as well as phase-independent materials (like porosity)
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    ny = 2
  []
  [subdomain0]
    input = gen
    type = SubdomainBoundingBoxGenerator
    bottom_left = '0 0 0'
    top_right = '1 0.5 0'
    block_id = 0
  []
  [subdomain1]
    input = subdomain0
    type = SubdomainBoundingBoxGenerator
    bottom_left = '0 0.5 0'
    top_right = '1 1 0'
    block_id = 1
  []
[]
[Variables]
  [p0]
    initial_condition = 1
  []
  [p1]
    initial_condition = 1.1
  []
[]
[AuxVariables]
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
  [kl]
    family = MONOMIAL
    order = CONSTANT
  []
  [kg]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
  [kl]
    type = PorousFlowPropertyAux
    property = relperm
    variable = kl
    phase = 0
  []
  [kg]
    type = PorousFlowPropertyAux
    property = relperm
    variable = kg
    phase = 1
  []
[]
[Kernels]
  [p0]
    type = PorousFlowMassTimeDerivative
    variable = p0
  []
  [p1]
    type = PorousFlowAdvectiveFlux
    gravity = '0 0 0'
    variable = p1
  []
[]
[FluidProperties]
  [fluid0]
    type = SimpleFluidProperties
  []
  [fluid1]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePP
    phase0_porepressure = p0
    phase1_porepressure = p1
    capillary_pressure = pc
  []
  [krl0]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.7
    phase = 0
    block = 0
  []
  [krg0]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.8
    phase = 1
    block = 0
  []
  [krl1]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.5
    phase = 0
    block = 1
  []
  [krg1]
    type = PorousFlowRelativePermeabilityConst
    kr = 0.4
    phase = 1
    block = 1
  []
  [perm]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 1 0 0 0 1'
  []
  [fluid0]
    type = PorousFlowSingleComponentFluid
    fp = fluid0
    phase = 0
  []
  [fluid1]
    type = PorousFlowSingleComponentFluid
    fp = fluid1
    phase = 1
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [porosity0]
    type = PorousFlowPorosityConst
    porosity = 0.1
    block = 0
  []
  [porosity1]
    type = PorousFlowPorosityConst
    porosity = 0.2
    block = 1
  []
[]
[Executioner]
  type = Transient
  end_time = 1
  nl_abs_tol = 1e-10
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 p1'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_hightemp.i)
# Tests correct calculation of properties in PorousFlowBrineCO2 in the elevated
# temperature regime (T > 110C)
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  temperature = 250
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [z]
     initial_condition = 0.2
  []
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.1
  []
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [pressure_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_water]
    type = PorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = timestep_end
  []
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [x0_water]
    type = PorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = timestep_end
  []
  [x0_gas]
    type = PorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
  []
  [x1_water]
    type = ElementIntegralVariablePostprocessor
    variable = x1_water
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
  []
  [x0mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [x1mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Outputs]
  csv = true
  execute_on = 'TIMESTEP_END'
  perf_graph = false
[]
(modules/porous_flow/test/tests/jacobian/fflux15.i)
# 1phase, 2components (water and tracer using BrineFluidProperties with constant salinity),
# constant insitu permeability and relative perm, nonzero gravity
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 1
    xmin = 0
    xmax = 10
    ny = 1
    ymin = 0
    ymax = 10
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [pp]
  []
  [tracer]
  []
[]
[ICs]
  [pp]
    type = RandomIC
    variable = pp
    min = 1e6
    max = 2e6
  []
  [tracer]
    type = RandomIC
    variable = tracer
    min = 0.1
    max = 0.2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = tracer
    fluid_component = 1
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = tracer
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'tracer'
  []
  [brine]
    type = PorousFlowBrine
    phase = 0
    xnacl = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-14 0 0 0 2e-14 0 0 0 3e-14'
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    kr = 1
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2_nonisothermal.i)
# Two phase nonisothermal Theis problem: Flow from single source.
# Constant rate injection 2 kg/s of cold CO2 into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 40
    xmin = 0.1
    xmax = 200
    bias_x = 1.05
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
  [xnacl]
    initial_condition = 0.1
  []
  [temperature]
    initial_condition = 70
    scaling = 1e-4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    fluid_component = 2
    variable = xnacl
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = xnacl
  []
  [energy]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heatadv]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
  [conduction]
    type = PorousFlowHeatConduction
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi xnacl temperature'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature = temperature
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [rockheat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1000
    density = 2500
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '50 0 0  0 50 0  0 0 50'
  []
[]
[BCs]
  [cold_gas]
    type = DirichletBC
    boundary = left
    variable = temperature
    value = 20
  []
  [gas_injecton]
    type = PorousFlowSink
    boundary = left
    variable = zi
    flux_function = -0.159155
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
  [righttemp]
    type = DirichletBC
    boundary = right
    value = 70
    variable = temperature
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e4
  nl_abs_tol = 1e-7
  nl_rel_tol = 1e-5
  # Avoids failing first time step in parallel
  line_search = 'none'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.5
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '2 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '2 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '2 0 0'
    variable = zi
  []
  [temperature]
    type = PointValue
    point = '2 0 0'
    variable = temperature
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '2 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '2 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/fflux14.i)
# 1phase, 2components (water and salt using BrineFluidProperties), constant insitu permeability
# Constant relative perm, nonzero gravity
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
    nx = 1
    xmin = 0
    xmax = 10
    ny = 1
    ymin = 0
    ymax = 10
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [pp]
  []
  [xnacl]
  []
[]
[ICs]
  [pp]
    type = RandomIC
    variable = pp
    min = 1e6
    max = 2e6
  []
  [massfrac0]
    type = RandomIC
    variable = xnacl
    min = 0.1
    max = 0.2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = xnacl
    fluid_component = 1
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = xnacl
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp xnacl'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'xnacl'
  []
  [brine]
    type = PorousFlowBrine
    phase = 0
    xnacl = xnacl
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-14 0 0 0 2e-14 0 0 0 3e-14'
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    kr = 1
    phase = 0
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/relperm/corey2.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Corey exponent n = 2 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
    family = LAGRANGE
    order = FIRST
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/fluidstate/theis_nonisothermal.i)
# Two-phase nonisothermal Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s of cold gas into warm reservoir
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 40
    xmin = 0.1
    xmax = 200
    bias_x = 1.05
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
  [temperature]
    initial_condition = 70
    scaling = 1e-4
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [energy]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heatadv]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
  [conduction]
    type = PorousFlowHeatConduction
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = methane
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [methane]
    type = MethaneFluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature = temperature
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
  [rockheat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1000
    density = 2500
  []
  [rock_thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '50 0 0  0 50 0  0 0 50'
  []
[]
[BCs]
  [cold_gas]
    type = DirichletBC
    boundary = left
    variable = temperature
    value = 20
  []
  [gas_injecton]
    type = PorousFlowSink
    boundary = left
    variable = zi
    flux_function = -0.159155
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
  [righttemp]
    type = DirichletBC
    boundary = right
    value = 70
    variable = temperature
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e4
  nl_abs_tol = 1e-7
  nl_rel_tol = 1e-5
  # Avoids failing first time step in parallel
  line_search = 'none'
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.5
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '2 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '2 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '2 0 0'
    variable = zi
  []
  [temperature]
    type = PointValue
    point = '2 0 0'
    variable = temperature
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '2 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '2 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_angle.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 2D version with velocity = (0.1, 0.2, 0)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
  xmin = 0
  xmax = 1
  ny = 10
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x - 2 * y'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1 | x > 0.3 | y < 0.1 | y > 0.3, 0, 1)'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_boundary_porepressure]
    type = FunctionDirichletBC
    variable = porepressure
    function = '1 - x - 2 * y'
    boundary = 'left right top bottom'
  []
  [no_tracer_at_boundary]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = 'left right top bottom'
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 0.3
  dt = 0.1
[]
[Outputs]
  [out]
    type = Exodus
    execute_on = 'initial final'
  []
[]
(modules/porous_flow/test/tests/relperm/brooks_corey1.i)
# Test Brooks-Corey relative permeability curve by varying saturation over the mesh
# Exponent lambda = 2 for both phases
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
  []
  [kr1]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    lambda = 2
    nw_phase = true
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/actions/addjoiner.i)
# Tests that including PorousFlowJoiner materials doesn't cause the simulation
# to fail due to the PorousFlowAddMaterialJoiner action adding duplicate
# PorousFlowJoiner materials
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[Variables]
  [p0]
  []
  [p1]
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [p1]
    type = Diffusion
    variable = p1
  []
[]
[FluidProperties]
  [fluid0]
    type = SimpleFluidProperties
  []
  [fluid1]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    at_nodes = true
  []
  [temperature_qp]
    type = PorousFlowTemperature
  []
  [ppss_nodal]
    type = PorousFlow2PhasePP
    at_nodes = true
    phase0_porepressure = p0
    phase1_porepressure = p1
    capillary_pressure = pc
  []
  [ppss_qp]
    type = PorousFlow2PhasePP
    phase0_porepressure = p0
    phase1_porepressure = p1
    capillary_pressure = pc
  []
  [fluid0_nodal]
    type = PorousFlowSingleComponentFluid
    fp = fluid0
    at_nodes = true
    phase = 0
  []
  [fluid1_nodal]
    type = PorousFlowSingleComponentFluid
    fp = fluid1
    at_nodes = true
    phase = 1
  []
  [fluid0_qp]
    type = PorousFlowSingleComponentFluid
    fp = fluid0
    phase = 0
  []
  [fluid1_qp]
    type = PorousFlowSingleComponentFluid
    fp = fluid1
    phase = 1
  []
  [density_nodal]
    type = PorousFlowJoiner
    at_nodes = true
    material_property = PorousFlow_fluid_phase_density_nodal
  []
  [density_qp]
    type = PorousFlowJoiner
    material_property = PorousFlow_fluid_phase_density_qp
  []
  [viscosity_nodal]
    type = PorousFlowJoiner
    material_property = PorousFlow_viscosity_nodal
    at_nodes = true
  []
  [viscosity_qp]
    type = PorousFlowJoiner
    material_property = PorousFlow_viscosity_qp
  []
  [energy_ndoal]
    type = PorousFlowJoiner
    at_nodes = true
    material_property = PorousFlow_fluid_phase_internal_energy_nodal
  []
  [energy_qp]
    type = PorousFlowJoiner
    material_property = PorousFlow_fluid_phase_internal_energy_qp
  []
  [enthalpy_nodal]
    type = PorousFlowJoiner
    material_property = PorousFlow_fluid_phase_enthalpy_nodal
    at_nodes = true
  []
  [enthalpy_qp]
    type = PorousFlowJoiner
    material_property = PorousFlow_fluid_phase_enthalpy_qp
  []
  [relperm0_nodal]
    type = PorousFlowRelativePermeabilityConst
    at_nodes = true
    kr = 0.5
    phase = 0
  []
  [relperm1_nodal]
    type = PorousFlowRelativePermeabilityConst
    at_nodes = true
    kr = 0.8
    phase = 1
  []
  [relperm_nodal]
    type = PorousFlowJoiner
    at_nodes = true
    material_property = PorousFlow_relative_permeability_nodal
  []
[]
[Executioner]
  type = Steady
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 p1'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower.i)
# checking that the PorousFlowDarcyVelocityComponentLowerDimensional AuxKernel works as expected
# for the fully-saturated case (relative-permeability = 1)
# The fractured_block.e has size = 10x10x10, and a fracture running through its
# centre, with normal = (0, -sin(20deg), cos(20deg))
# Porepressure is initialised to grad(P) = (0, 0, 1)
# Fluid_density = 2
# viscosity = 10
# relative_permeability = 1
# permeability = (5, 5, 5)  (in the bulk)
# permeability = (10, 10, 10)   (in the fracture)
# aperture = 1
# gravity = (1, 0.5, 0.2)
# So Darcy velocity in the bulk = (1, 0.5, -0.3)
# in the fracture grad(P) = (0, 0.3213938, 0.11697778)
# In the fracture the projected gravity vector is
# tangential_gravity = (1, 0.5057899, 0.18409245)
# So the Darcy velocity in the fracture = (2, 0.690186, 0.251207)
[Mesh]
  type = FileMesh
  file = fractured_block.e
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '1 0.5 0.2'
[]
[Variables]
  [pp]
  []
[]
[ICs]
  [pinit]
    type = FunctionIC
    function = z
    variable = pp
  []
[]
[Kernels]
  [dummy]
    type = TimeDerivative
    variable = pp
  []
[]
[AuxVariables]
  [bulk_vel_x]
    order = CONSTANT
    family = MONOMIAL
  []
  [bulk_vel_y]
    order = CONSTANT
    family = MONOMIAL
  []
  [bulk_vel_z]
    order = CONSTANT
    family = MONOMIAL
  []
  [fracture_vel_x]
    order = CONSTANT
    family = MONOMIAL
    block = 3
  []
  [fracture_vel_y]
    order = CONSTANT
    family = MONOMIAL
    block = 3
  []
  [fracture_vel_z]
    order = CONSTANT
    family = MONOMIAL
    block = 3
  []
[]
[AuxKernels]
  [bulk_vel_x]
    type = PorousFlowDarcyVelocityComponent
    variable = bulk_vel_x
    component = x
    fluid_phase = 0
  []
  [bulk_vel_y]
    type = PorousFlowDarcyVelocityComponent
    variable = bulk_vel_y
    component = y
    fluid_phase = 0
  []
  [bulk_vel_z]
    type = PorousFlowDarcyVelocityComponent
    variable = bulk_vel_z
    component = z
    fluid_phase = 0
  []
  [fracture_vel_x]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_x
    component = x
    fluid_phase = 0
  []
  [fracture_vel_y]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_y
    component = y
    fluid_phase = 0
  []
  [fracture_vel_z]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_z
    component = z
    fluid_phase = 0
 []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1E16
    viscosity = 10
    density0 = 2
    thermal_expansion = 0
  []
[]
[Postprocessors]
  [bulk_vel_x]
    type = ElementAverageValue
    block = 1
    variable = bulk_vel_x
  []
  [bulk_vel_y]
    type = ElementAverageValue
    block = 1
    variable = bulk_vel_y
  []
  [bulk_vel_z]
    type = ElementAverageValue
    block = 1
    variable = bulk_vel_z
  []
  [fracture_vel_x]
    type = ElementAverageValue
    block = 3
    variable = fracture_vel_x
  []
  [fracture_vel_y]
    type = ElementAverageValue
    block = 3
    variable = fracture_vel_y
  []
  [fracture_vel_z]
    type = ElementAverageValue
    block = 3
    variable = fracture_vel_z
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
    block = '1 2'
  []
  [permeability_fracture]
    type = PorousFlowPermeabilityConst
    permeability = '10 0 0 0 10 0 0 0 10'
    block = 3
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Executioner]
  type = Transient
  dt = 1
  end_time = 1
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/gravity/grav02e_fv.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, constant capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with no residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-10 0 0'
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = 1.5e6
  []
  [sgas]
    type = MooseVariableFVReal
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [ppgas]
    type = MooseVariableFVReal
  []
  [swater]
    type = MooseVariableFVReal
  []
  [relpermwater]
    type = MooseVariableFVReal
  []
  [relpermgas]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = ADPorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
    execute_on = 'initial timestep_end'
  []
  [swater]
    type = ADPorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
    execute_on = 'initial timestep_end'
  []
  [relpermwater]
    type = ADPorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = relpermwater
    execute_on = 'initial timestep_end'
  []
  [relpermgas]
    type = ADPorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
    execute_on = 'initial timestep_end'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[VectorPostprocessors]
  [vars]
    type = ElementValueSampler
    variable = 'ppgas ppwater sgas swater'
    sort_by = x
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 5e3
  nl_abs_tol = 1e-12
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e3
  []
[]
[Outputs]
  execute_on = 'final'
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/fluidstate/theis.i)
# Two phase Theis problem: Flow from single source using WaterNCG fluidstate.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 40
  xmax = 200
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 2e2
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'pgas zi'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '1 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '1 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '1 0 0'
    variable = zi
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '1 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '1 0 0'
    variable = y0
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [csvout]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/fluidstate/waterncg_nonisothermal.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pgas]
    initial_condition = 1e6
  []
  [z]
    initial_condition = 0.25
  []
  [temperature]
    initial_condition = 70
  []
[]
[AuxVariables]
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [pressure_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_water]
    type = PorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = timestep_end
  []
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [enthalpy_water]
    type = PorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = timestep_end
  []
  [enthalpy_gas]
    type = PorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = timestep_end
  []
  [internal_energy_water]
    type = PorousFlowPropertyAux
    variable = internal_energy_water
    property = internal_energy
    phase = 0
    execute_on = timestep_end
  []
  [internal_energy_gas]
    type = PorousFlowPropertyAux
    variable = internal_energy_gas
    property = internal_energy
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [x0_water]
    type = PorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = timestep_end
  []
  [x0_gas]
    type = PorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [heat]
    type = TimeDerivative
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z '
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature = temperature
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
  []
  [enthalpy_water]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_water
  []
  [enthalpy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_gas
  []
  [internal_energy_water]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_water
  []
  [internal_energy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_gas
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
  []
  [x0mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [x1mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/poroperm/poro_hm_func.i)
# Test that porosity is correctly calculated.
# Porosity = biot + (phi0 - biot) * exp(-vol_strain + (biot_prime - 1) / solid_bulk * (porepressure - ref_pressure))
# The parameters used are:
# biot = 0.7
# biot_prime = 0.75
# phi0 = 0.5
# vol_strain = 0.5
# solid_bulk = 0.3
# porepressure = 2
# ref_pressure = 3
# which yield porosity = 0.420877515
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
  biot_coefficient = 0.7
[]
[Variables]
  [porepressure]
    initial_condition = 2
  []
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
[]
[ICs]
  [disp_x]
    type = FunctionIC
    function = '0.5 * x'
    variable = disp_x
  []
[]
[Kernels]
  [dummy_p]
    type = TimeDerivative
    variable = porepressure
  []
  [dummy_x]
    type = TimeDerivative
    variable = disp_x
  []
  [dummy_y]
    type = TimeDerivative
    variable = disp_y
  []
  [dummy_z]
    type = TimeDerivative
    variable = disp_z
  []
[]
[AuxVariables]
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Postprocessors]
  [porosity]
    type = PointValue
    variable = porosity
    point = '0 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Functions]
  [solid_bulk_func]
    type = ParsedFunction
    expression = '0.3 + (t-1) * 0.1'
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 3
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [total_strain]
    type = ComputeSmallStrain
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosity
    fluid = true
    mechanical = true
    ensure_positive = false
    porosity_zero = 0.5
    solid_bulk = solid_bulk_func
    reference_porepressure = 3
    biot_coefficient_prime = 0.75
  []
[]
[Executioner]
  solve_type = Newton
  type = Transient
  num_steps = 2
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/examples/lava_lamp/1phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# The model starts with CO2 in the liquid phase only.  The CO2 diffuses into the brine.
# As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores.
[GlobalParams]
  PorousFlowDictator = 'dictator'
  gravity = '0 -9.81 0'
[]
[Adaptivity]
  max_h_level = 2
  marker = marker
  initial_marker = initial
  initial_steps = 2
  [Indicators]
    [indicator]
      type = GradientJumpIndicator
      variable = zi
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = indicator
      refine = 0.8
    []
    [initial]
      type = BoxMarker
      bottom_left = '0 1.95 0'
      top_right = '2 2 0'
      inside = REFINE
      outside = DO_NOTHING
    []
  []
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  ymin = 1.5
  ymax = 2
  xmax = 2
  ny = 20
  nx = 40
  bias_y = 0.95
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.01
  []
  [saturation_gas]
    order = FIRST
    family = MONOMIAL
  []
  [xco2l]
    order = FIRST
    family = MONOMIAL
  []
  [density_liquid]
    order = FIRST
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'timestep_end'
  []
  [xco2l]
    type = PorousFlowPropertyAux
    variable = xco2l
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [density_liquid]
    type = PorousFlowPropertyAux
    variable = density_liquid
    property = density
    phase = 0
    execute_on = 'timestep_end'
  []
[]
[Variables]
  [pgas]
  []
  [zi]
    scaling = 1e4
  []
[]
[ICs]
  [pressure]
    type = FunctionIC
    function = 10e6-9.81*1000*y
    variable = pgas
  []
  [zi]
    type = ConstantIC
    value = 0
    variable = zi
  []
  [porosity]
    type = RandomIC
    variable = porosity
    min = 0.25
    max = 0.275
    seed = 0
  []
[]
[BCs]
  [top]
    type = DirichletBC
    value = 0.04
    variable = zi
    boundary = top
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pgas
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = zi
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedBicubicFluidProperties
    fp = co2sw
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = '45'
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = 'pgas'
    z = 'zi'
    temperature_unit = Celsius
    xnacl = 'xnacl'
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = porosity
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [diffusivity]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
    tortuosity = '1 1'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e6
  nl_max_its = 25
  l_max_its = 100
  dtmax = 1e4
  nl_abs_tol = 1e-6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 100
    growth_factor = 2
    cutback_factor = 0.5
  []
[]
[Functions]
  [flux]
    type = ParsedFunction
    symbol_values = 'delta_xco2 dt'
    symbol_names = 'dx dt'
    expression = 'dx/dt'
  []
[]
[Postprocessors]
  [total_co2_in_gas]
    type = PorousFlowFluidMass
    phase = 1
    fluid_component = 1
  []
  [total_co2_in_liquid]
    type = PorousFlowFluidMass
    phase = 0
    fluid_component = 1
  []
  [numdofs]
    type = NumDOFs
  []
  [delta_xco2]
    type = ChangeOverTimePostprocessor
    postprocessor = total_co2_in_liquid
  []
  [dt]
    type = TimestepSize
  []
  [flux]
    type = FunctionValuePostprocessor
    function = flux
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  exodus = true
  csv = true
[]
(modules/porous_flow/examples/co2_intercomparison/1Dradial/properties.i)
# Liquid and gas properties for code intercomparison problem 3
#
# From Pruess et al, Code intercomparison builds confidence in
# numerical simulation models for geologic disposal of CO2, Energy 29 (2004)
#
# This test simply calculates density and viscosity of each phase for
# various pressures and salinities, as well as mass fractions of CO2 in the
# liquid phase and H2O in the gas phase.
#
# Four versions of this are run:
# 1) No CO2, 0 salt mass fraction (pure water)
# 2) Enough CO2 to form gas phase, 0 salt mass fraction (pure water)
# 3) No CO2, 0.15 salt mass fraction
# 4) Enough CO2 to form gas phase, 0.15 salt mass fraction
#
# These results compare well with detailed results presented in Pruess et al,
# Intercomparison of numerical simulation codes for geologic disposal of CO2,
# LBNL-51813 (2002)
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 4
  xmax = 4
  # To get consistent ordering of results with distributed meshes
  allow_renumbering = false
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[AuxVariables]
  [density_liquid]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_liquid]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
  [xnacl]
    initial_condition = 0.0
  []
[]
[AuxKernels]
  [density_liquid]
    type = PorousFlowPropertyAux
    variable = density_liquid
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_liquid]
    type = PorousFlowPropertyAux
    variable = viscosity_liquid
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    order = CONSTANT
    family = MONOMIAL
  []
  [zi]
    initial_condition = 0.0
  []
[]
[Functions]
  [pic]
    type = ParsedFunction
    expression = 'if(x<1,12e6,if(x<2,16e6,if(x<3,20e6,24e6)))'
  []
[]
[ICs]
  [pic]
    type = FunctionIC
    function = pic
    variable = pgas
  []
[]
[Kernels]
  [diffusionp]
    type = NullKernel
    variable = pgas
  []
  [diffusionz]
    type = NullKernel
    variable = zi
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 45
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
[]
[Outputs]
  perf_graph = true
  csv = true
  execute_on = timestep_end
  file_base = properties_water
[]
[VectorPostprocessors]
  [vpp]
    type = ElementValueSampler
    variable = 'pgas density_liquid density_gas viscosity_liquid viscosity_gas x1 y0'
    sort_by = x
  []
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2000
  bias_x = 1.003
  xmin = 0.1
  xmax = 5000
  ny = 1
  ymin = 0
  ymax = 11
  coord_type = RZ
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  biot_coefficient = 1.0
[]
[Variables]
  [pwater]
    initial_condition = 18.3e6
  []
  [sgas]
    initial_condition = 0.0
  []
  [temp]
    initial_condition = 358
  []
  [disp_r]
  []
[]
[AuxVariables]
  [rate]
  []
  [disp_z]
  []
  [massfrac_ph0_sp0]
    initial_condition = 1 # all H20 in phase=0
  []
  [massfrac_ph1_sp0]
    initial_condition = 0 # no H2O in phase=1
  []
  [pgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [stress_rr]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_tt]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = temp
  []
  [conduction]
    type = PorousFlowExponentialDecay
    use_displaced_mesh = false
    variable = temp
    reference = 358
    rate = rate
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = temp
    eigenstrain_names = thermal_contribution
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxKernels]
  [rate]
    type = FunctionAux
    variable = rate
    execute_on = timestep_begin
    function = decay_rate
  []
  [pgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [stress_rr]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_rr
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
[]
[Functions]
  [decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
    type = ParsedFunction
    expression = 'sqrt(10056886.914/t)/11.0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pwater sgas disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 970.0
    viscosity = 0.3394e-3
    cv = 4149.0
    cp = 4149.0
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
  [co2]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 516.48
    viscosity = 0.0393e-3
    cv = 2920.5
    cp = 2920.5
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
  []
  [gas]
    type = PorousFlowSingleComponentFluid
    fp = co2
    phase = 1
  []
  [porosity_reservoir]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability_reservoir]
    type = PorousFlowPermeabilityConst
    permeability = '2e-12 0 0  0 0 0  0 0 0'
  []
  [relperm_liquid]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    phase = 0
    s_res = 0.200
    sum_s_res = 0.405
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    s_res = 0.205
    sum_s_res = 0.405
    nw_phase = true
    lambda = 2
  []
  [thermal_conductivity_reservoir]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0 0 0  0 1.320 0  0 0 0'
    wet_thermal_conductivity = '0 0 0  0 3.083 0  0 0 0'
  []
  [internal_energy_reservoir]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2350.0
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    shear_modulus = 6.0E9
    poissons_ratio = 0.2
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution ini_stress'
  []
  [ini_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '-12.8E6 0 0  0 -51.3E6 0  0 0 -12.8E6'
    eigenstrain_name = ini_stress
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = temp
    stress_free_temperature = 358
    thermal_expansion_coeff = 5E-6
    eigenstrain_name = thermal_contribution
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
[]
[BCs]
  [outer_pressure_fixed]
    type = DirichletBC
    boundary = right
    value = 18.3e6
    variable = pwater
  []
  [outer_saturation_fixed]
    type = DirichletBC
    boundary = right
    value = 0.0
    variable = sgas
  []
  [outer_temp_fixed]
    type = DirichletBC
    boundary = right
    value = 358
    variable = temp
  []
  [fixed_outer_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = right
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = sgas
    use_mobility = false
    use_relperm = false
    fluid_phase = 1
    flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
  []
  [cold_co2]
    type = DirichletBC
    boundary = left
    variable = temp
    value = 294
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = left
    variable = disp_r
    component = 0
    postprocessor = p_bh # note, this lags
    use_displaced_mesh = false
  []
[]
[Postprocessors]
  [p_bh]
    type = PointValue
    variable = pwater
    point = '0.1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
[]
[VectorPostprocessors]
  [ptsuss]
    type = LineValueSampler
    use_displaced_mesh = false
    start_point = '0.1 0 0'
    end_point = '5000 0 0'
    sort_by = x
    num_points = 50000
    outputs = csv
    variable = 'pwater temp sgas disp_r stress_rr stress_tt'
  []
[]
[Preconditioning]
  active = 'smp'
  [smp]
    type = SMP
    full = true
    #petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E2       1E-5        500'
  []
  [mumps]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
    petsc_options_value = 'gmres      lu       mumps                         NONZERO               1E-5       1E2       50'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1.5768e8
  #dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.1
  []
[]
[Outputs]
  print_linear_residuals = false
  sync_times = '3600 86400 2.592E6 1.5768E8'
  perf_graph = true
  exodus = true
  [csv]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2comp.i)
# Pressure pulse in 1D with 1 phase but 2 components (where density and viscosity depend on mass fraction)
# This test uses BrineFluidProperties with the PorousFlowMultiComponentFluid material, but could be run using
# the PorousFlowBrine material instead.
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp xnacl'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Variables]
  [pp]
    initial_condition = 1e6
  []
  [xnacl]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = xnacl
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = xnacl
  []
[]
[AuxVariables]
  [density]
    family = MONOMIAL
    order = FIRST
  []
[]
[AuxKernels]
  [density]
    type = PorousFlowPropertyAux
    variable = density
    property = density
    phase = 0
    execute_on = 'initial timestep_end'
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 293
  []
  [mass_fractions]
    type = PorousFlowMassFraction
    mass_fraction_vars = xnacl
  []
  [ps]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [brine]
    type = PorousFlowMultiComponentFluid
    x = xnacl
    fp = brine
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-7 0 0 0 1e-7 0 0 0 1e-7'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    kr = 1
    phase = 0
  []
[]
[BCs]
  [left_p]
    type = DirichletBC
    boundary = left
    value = 2e6
    variable = pp
  []
  [right_p]
    type = DirichletBC
    boundary = right
    value = 1e6
    variable = pp
  []
  [left_xnacl]
    type = DirichletBC
    boundary = left
    value = 0.2
    variable = xnacl
  []
  [right_xnacl]
    type = DirichletBC
    boundary = right
    value = 0
    variable = xnacl
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_shift_type'
    petsc_options_value = 'bcgs lu  NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 5
[]
[Postprocessors]
  [p000]
    type = PointValue
    variable = pp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [p050]
    type = PointValue
    variable = pp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [p100]
    type = PointValue
    variable = pp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_000]
    type = PointValue
    variable = xnacl
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_000]
    type = PointValue
    variable = density
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_020]
    type = PointValue
    variable = xnacl
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_020]
    type = PointValue
    variable = density
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_040]
    type = PointValue
    variable = xnacl
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_040]
    type = PointValue
    variable = density
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_060]
    type = PointValue
    variable = xnacl
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_060]
    type = PointValue
    variable = density
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_080]
    type = PointValue
    variable = xnacl
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_080]
    type = PointValue
    variable = density
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [xnacl_100]
    type = PointValue
    variable = xnacl
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
  [density_100]
    type = PointValue
    variable = density
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/recover/pffltvd.i)
# Tests that PorousFlow can successfully recover using a checkpoint file.
# This test contains stateful material properties, adaptivity, integrated
# boundary conditions with nodal-sized materials, and TVD flux limiting.
#
# This test file is run three times:
# 1) The full input file is run to completion
# 2) The input file is run for half the time and checkpointing is included
# 3) The input file is run in recovery using the checkpoint data
#
# The final output of test 3 is compared to the final output of test 1 to verify
# that recovery was successful.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 1
  []
  # To get consistent ordering of results with distributed meshes
  allow_renumbering = false
[]
[Adaptivity]
  initial_steps = 1
  initial_marker = tracer_marker
  marker = tracer_marker
  max_h_level = 1
  [Markers]
    [tracer_marker]
      type = ValueRangeMarker
      variable = tracer
      lower_bound = 0.02
      upper_bound = 0.98
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '2 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 2
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = NodalValueSampler
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 0.2
  dt = 0.05
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_3D.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, employing PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 3D version
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 10
  xmin = 0
  xmax = 1
  ny = 4
  ymin = 0
  ymax = 0.5
  nz = 3
  zmin = 0
  zmax = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0.5 2'
    num_points = 11
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 0.3
  dt = 6E-2
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  print_linear_residuals = false
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_fv.i)
# Pressure pulse in 1D with 2 phases, 2components - transient using FV
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = 2e6
  []
  [sgas]
    type = MooseVariableFVReal
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [ppgas]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = ADPorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[FVBCs]
  [leftwater]
    type = FVDirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = FVDirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
  [sgas]
    type = FVDirichletBC
    boundary = 'left right'
    value = 0.3
    variable = sgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = ElementValueSampler
    sort_by = x
    variable = 'ppwater ppgas'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS_fv
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
  exodus = true
[]
(modules/porous_flow/test/tests/relperm/corey3.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
    family = LAGRANGE
    order = FIRST
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
    s_res = 0.2
    sum_s_res = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
    s_res = 0.3
    sum_s_res = 0.5
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_2D_trimesh.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 2D version
[Mesh]
  type = FileMesh
  file = trimesh.msh
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  block = '50'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.305,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0.04 0'
    num_points = 101
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-2
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  print_linear_residuals = false
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/examples/lava_lamp/2phase_convection.i)
# Two phase density-driven convection of dissolved CO2 in brine
#
# Initially, the model has a gas phase at the top with a saturation of 0.29
# (which corresponds to an initial value of zi = 0.2).
# Diffusion of the dissolved CO2
# component from the saturated liquid to the unsaturated liquid below reduces the
# amount of CO2 in the gas phase. As the density of the CO2-saturated brine is greater
# than the unsaturated brine, a gravitational instability arises and density-driven
# convection of CO2-rich fingers descend into the unsaturated brine.
#
# The instability is seeded by a random perturbation to the porosity field.
# Mesh adaptivity is used to refine the mesh as the fingers form.
#
# Note: this model is computationally expensive, so should be run with multiple cores,
# preferably on a cluster.
[GlobalParams]
  PorousFlowDictator = 'dictator'
  gravity = '0 -9.81 0'
[]
[Adaptivity]
  max_h_level = 2
  marker = marker
  initial_marker = initial
  initial_steps = 2
  [Indicators]
    [indicator]
      type = GradientJumpIndicator
      variable = zi
    []
  []
  [Markers]
    [marker]
      type = ErrorFractionMarker
      indicator = indicator
      refine = 0.8
    []
    [initial]
      type = BoxMarker
      bottom_left = '0 1.95 0'
      top_right = '2 2 0'
      inside = REFINE
      outside = DO_NOTHING
    []
  []
[]
[Mesh]
  type = GeneratedMesh
  dim = 2
  ymax = 2
  xmax = 2
  ny = 40
  nx = 40
  bias_y = 0.95
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = pgas
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = zi
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.01
  []
  [saturation_gas]
    order = FIRST
    family = MONOMIAL
  []
  [xco2l]
    order = FIRST
    family = MONOMIAL
  []
  [density_liquid]
    order = FIRST
    family = MONOMIAL
  []
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'timestep_end'
  []
  [xco2l]
    type = PorousFlowPropertyAux
    variable = xco2l
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'timestep_end'
  []
  [density_liquid]
    type = PorousFlowPropertyAux
    variable = density_liquid
    property = density
    phase = 0
    execute_on = 'timestep_end'
  []
[]
[Variables]
  [pgas]
  []
  [zi]
    scaling = 1e4
  []
[]
[ICs]
  [pressure]
    type = FunctionIC
    function = 10e6-9.81*1000*y
    variable = pgas
  []
  [zi]
    type = BoundingBoxIC
    variable = zi
    x1 = 0
    x2 = 2
    y1 = 1.95
    y2 = 2
    inside = 0.2
    outside = 0
  []
  [porosity]
    type = RandomIC
    variable = porosity
    min = 0.25
    max = 0.275
    seed = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedBicubicFluidProperties
    fp = co2sw
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = '45'
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = 'pgas'
    z = 'zi'
    temperature_unit = Celsius
    xnacl = 'xnacl'
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = porosity
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0 0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
    s_res = 0.1
    sum_s_res = 0.2
  []
  [diffusivity]
    type = PorousFlowDiffusivityConst
    diffusion_coeff = '2e-9 2e-9 2e-9 2e-9'
    tortuosity = '1 1'
  []
[]
[Preconditioning]
  active = basic
  [mumps_is_best_for_parallel_jobs]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2             '
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e6
  nl_max_its = 25
  l_max_its = 100
  dtmax = 1e4
  nl_abs_tol = 1e-6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
    cutback_factor = 0.5
  []
[]
[Functions]
  [flux]
    type = ParsedFunction
    symbol_values = 'delta_xco2 dt'
    symbol_names = 'dx dt'
    expression = 'dx/dt'
  []
[]
[Postprocessors]
  [total_co2_in_gas]
    type = PorousFlowFluidMass
    phase = 1
    fluid_component = 1
  []
  [total_co2_in_liquid]
    type = PorousFlowFluidMass
    phase = 0
    fluid_component = 1
  []
  [numdofs]
    type = NumDOFs
  []
  [delta_xco2]
    type = ChangeOverTimePostprocessor
    postprocessor = total_co2_in_liquid
  []
  [dt]
    type = TimestepSize
  []
  [flux]
    type = FunctionValuePostprocessor
    function = flux
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  exodus = true
  csv = true
[]
(modules/porous_flow/test/tests/dirackernels/theis3.i)
# Two phase Theis problem: Flow from single source
# Constant rate injection 0.5 kg/s
# 1D cylindrical mesh
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmax = 2000
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 20e6
  []
  [sgas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-4
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = ppwater
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 0.5
    variable = sgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e4
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'ppwater sgas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [ppwater]
    type = PointValue
    point = '4 0 0'
    variable = ppwater
  []
  [sgas]
    type = PointValue
    point = '4 0 0'
    variable = sgas
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
[]
[Outputs]
  file_base = theis3
  print_linear_residuals = false
  perf_graph = true
  [csv]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/fluidstate/theis_brineco2.i)
# Two phase Theis problem: Flow from single source.
# Constant rate injection 2 kg/s
# 1D cylindrical mesh
# Initially, system has only a liquid phase, until enough gas is injected
# to form a gas phase, in which case the system becomes two phase.
#
# This test takes a few minutes to run, so is marked heavy
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 2000
  xmax = 2000
  rz_coord_axis = Y
  coord_type = RZ
[]
[Problem]
  type = FEProblem
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1]
    order = CONSTANT
    family = MONOMIAL
  []
  [y0]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [x1]
    type = PorousFlowPropertyAux
    variable = x1
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [y0]
    type = PorousFlowPropertyAux
    variable = y0
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [zi]
    initial_condition = 0
  []
  [xnacl]
    initial_condition = 0.1
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pgas
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = zi
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = zi
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    fluid_component = 2
    variable = xnacl
  []
  [flux2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 2
    variable = xnacl
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas zi xnacl'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2sw]
    type = CO2FluidProperties
  []
  [co2]
    type = TabulatedFluidProperties
    fp = co2sw
    fluid_property_file = 'fluid_properties.csv'
    allow_fp_and_tabulation = true
    error_on_out_of_bounds = false
  []
  [water]
    type = Water97FluidProperties
  []
  [watertab]
    type = TabulatedFluidProperties
    fp = water
    temperature_min = 273.15
    temperature_max = 573.15
    fluid_property_output_file = water_fluid_properties.csv
    # Comment out the fp parameter and uncomment below to use the newly generated tabulation
    # fluid_property_file = water_fluid_properties.csv
  []
  [brine]
    type = BrineFluidProperties
    water_fp = watertab
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = zi
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = pgas
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 2
    variable = zi
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.5
  []
[]
[VectorPostprocessors]
  [line]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    start_point = '0 0 0'
    end_point = '2000 0 0'
    num_points = 10000
    variable = 'pgas zi xnacl x1 saturation_gas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [pgas]
    type = PointValue
    point = '4 0 0'
    variable = pgas
  []
  [sgas]
    type = PointValue
    point = '4 0 0'
    variable = saturation_gas
  []
  [zi]
    type = PointValue
    point = '4 0 0'
    variable = zi
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [x1]
    type = PointValue
    point = '4 0 0'
    variable = x1
  []
  [y0]
    type = PointValue
    point = '4 0 0'
    variable = y0
  []
  [xnacl]
    type = PointValue
    point = '4 0 0'
    variable = xnacl
  []
[]
[Outputs]
  print_linear_residuals = false
  perf_graph = true
  [csvout]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]
(modules/porous_flow/test/tests/relperm/unity.i)
# Test perfectly mobile relative permeability curve by varying saturation over the mesh
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [kr1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase.i)
# 2phase heat conduction, with saturation fixed at 0.5
# apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [phase0_porepressure]
    initial_condition = 0
  []
  [phase1_saturation]
    initial_condition = 0.5
  []
  [temp]
    initial_condition = 200
  []
[]
[Kernels]
  [dummy_p0]
    type = TimeDerivative
    variable = phase0_porepressure
  []
  [dummy_s1]
    type = TimeDerivative
    variable = phase1_saturation
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_conduction]
    type = PorousFlowHeatConduction
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 0.4
    thermal_expansion = 0
    cv = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0.3 0 0  0 0 0  0 0 0'
    wet_thermal_conductivity = '1.7 0 0  0 0 0  0 0 0'
    exponent = 1.0
    aqueous_phase_number = 1
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = phase0_porepressure
    phase1_saturation = phase1_saturation
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.8
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 0.25
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 300
    variable = temp
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E1
  end_time = 1E2
[]
[Postprocessors]
  [t000]
    type = PointValue
    variable = temp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [t010]
    type = PointValue
    variable = temp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [t020]
    type = PointValue
    variable = temp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [t030]
    type = PointValue
    variable = temp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [t040]
    type = PointValue
    variable = temp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [t050]
    type = PointValue
    variable = temp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [t060]
    type = PointValue
    variable = temp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [t070]
    type = PointValue
    variable = temp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [t080]
    type = PointValue
    variable = temp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [t090]
    type = PointValue
    variable = temp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [t100]
    type = PointValue
    variable = temp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = two_phase
  [csv]
    type = CSV
  []
  exodus = false
[]
(modules/porous_flow/test/tests/poroperm/poro_thm.i)
# Test that porosity is correctly calculated.
# Porosity = biot + (phi0 - biot) * exp(-vol_strain + (biot - 1) / solid_bulk * (porepressure - ref_pressure) + thermal_exp_coeff * (temperature - ref_temperature))
# The parameters used are:
# biot = 0.7
# phi0 = 0.5
# vol_strain = 0.5
# solid_bulk = 0.3
# porepressure = 2
# ref_pressure = 3
# thermal_exp_coeff = 0.5
# temperature = 4
# ref_temperature = 3.5
# which yield porosity = 0.276599996677
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
  biot_coefficient = 0.7
[]
[Variables]
  [porepressure]
    initial_condition = 2
  []
  [temperature]
    initial_condition = 4
  []
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
[]
[ICs]
  [disp_x]
    type = FunctionIC
    function = '0.5 * x'
    variable = disp_x
  []
[]
[Kernels]
  [dummy_p]
    type = TimeDerivative
    variable = porepressure
  []
  [dummy_t]
    type = TimeDerivative
    variable = temperature
  []
  [dummy_x]
    type = TimeDerivative
    variable = disp_x
  []
  [dummy_y]
    type = TimeDerivative
    variable = disp_y
  []
  [dummy_z]
    type = TimeDerivative
    variable = disp_z
  []
[]
[AuxVariables]
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Postprocessors]
  [porosity]
    type = PointValue
    variable = porosity
    point = '0 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure temperature'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [total_strain]
    type = ComputeSmallStrain
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosity
    mechanical = true
    fluid = true
    thermal = true
    ensure_positive = false
    porosity_zero = 0.5
    solid_bulk = 0.3
    thermal_expansion_coeff = 0.5
    reference_porepressure = 3
    reference_temperature = 3.5
  []
[]
[Executioner]
  solve_type = Newton
  type = Transient
  num_steps = 1
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
# Using a two-phase system (see 2species_equilibrium for the single-phase)
# The saturations, porosity, mass fractions, tortuosity and diffusion coefficients are chosen so that the results are identical to 2species_equilibrium
#
# PorousFlow analogy of chemical_reactions/test/tests/aqueous_equilibrium/2species.i
#
# Simple equilibrium reaction example to illustrate the use of PorousFlowMassFractionAqueousEquilibriumChemistry
#
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction:
#
#      reactions = '2a = pa2     rate = 10^2
#                   a + b = pab  rate = 10^-2'
#
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
[]
[Variables]
  [a]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = BoundingBoxIC
      x1 = 0.0
      y1 = 0.0
      x2 = 1.0e-10
      y2 = 1
      inside = 1.0e-2
      outside = 1.0e-10
    []
  []
  [b]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = BoundingBoxIC
      x1 = 0.0
      y1 = 0.0
      x2 = 1.0e-10
      y2 = 1
      inside = 1.0e-2
      outside = 1.0e-10
    []
  []
[]
[AuxVariables]
  [eqm_k0]
    initial_condition = 1E2
  []
  [eqm_k1]
    initial_condition = 1E-2
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [a_in_phase0]
    initial_condition = 0.0
  []
  [b_in_phase0]
    initial_condition = 0.0
  []
  [pa2]
    family = MONOMIAL
    order = CONSTANT
  []
  [pab]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [pa2]
    type = PorousFlowPropertyAux
    property = secondary_concentration
    secondary_species = 0
    variable = pa2
  []
  [pab]
    type = PorousFlowPropertyAux
    property = secondary_concentration
    secondary_species = 1
    variable = pab
  []
[]
[ICs]
  [pressure0]
    type = FunctionIC
    variable = pressure0
    function = 2-x
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [flux_a]
    type = PorousFlowAdvectiveFlux
    variable = a
    fluid_component = 0
  []
  [diff_a]
    type = PorousFlowDispersiveFlux
    variable = a
    fluid_component = 0
    disp_trans = '0 0'
    disp_long = '0 0'
  []
  [mass_b]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = b
  []
  [flux_b]
    type = PorousFlowAdvectiveFlux
    variable = b
    fluid_component = 1
  []
  [diff_b]
    type = PorousFlowDispersiveFlux
    variable = b
    fluid_component = 1
    disp_trans = '0 0'
    disp_long = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'a b'
    number_fluid_phases = 2
    number_fluid_components = 3
    number_aqueous_equilibrium = 2
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [massfrac]
    type = PorousFlowMassFractionAqueousEquilibriumChemistry
    mass_fraction_vars = 'a_in_phase0 b_in_phase0 a b'
    num_reactions = 2
    equilibrium_constants = 'eqm_k0 eqm_k1'
    primary_activity_coefficients = '1 1'
    secondary_activity_coefficients = '1 1'
    reactions = '2 0
                 1 1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.8
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    # porous_flow permeability / porous_flow viscosity = chemical_reactions conductivity = 1E-4
    permeability = '1E-7 0 0 0 1E-7 0 0 0 1E-7'
  []
  [relp0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relp1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
  [diff]
    type = PorousFlowDiffusivityConst
    # porous_flow diffusion_coeff * tortuousity * porosity = chemical_reactions diffusivity = 1E-4
    diffusion_coeff = '5E-4 5E-4 5E-4
                       5E-4 5E-4 5E-4'
    tortuosity = '0.25 0.25'
  []
[]
[BCs]
  [a_left]
    type = DirichletBC
    variable = a
    boundary = left
    value = 1.0e-2
  []
  [b_left]
    type = DirichletBC
    variable = b
    boundary = left
    value = 1.0e-2
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 10
  end_time = 100
[]
[Outputs]
  print_linear_residuals = true
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/chemistry/dissolution_limited_2phase.i)
# Using a two-phase system (see dissolution_limited.i for the single-phase)
# The saturation and porosity are chosen so that the results are identical to dissolution_limited.i
#
# The dissolution reaction, with limited initial mineral concentration
#
# a <==> mineral
#
# produces "mineral".  Using mineral_density = fluid_density, theta = 1 = eta, the DE is
#
# a' = -(mineral / (porosity * saturation))' = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#
# The following parameters are used
#
# T_ref = 0.5 K
# T = 1 K
# activation_energy = 3 J/mol
# gas_constant = 6 J/(mol K)
# kinetic_rate_at_ref_T = 0.60653 mol/(m^2 s)
# These give rate = 0.60653 * exp(1/2) = 1 mol/(m^2 s)
#
# surf_area = 0.5 m^2/L
# molar_volume = 2 L/mol
# These give rate * surf_area * molar_vol = 1 s^-1
#
# equilibrium_constant = 0.5 (dimensionless)
# primary_activity_coefficient = 2 (dimensionless)
# stoichiometry = 1 (dimensionless)
# This means that 1 - (1 / eqm_const) * (act_coeff * a)^stoi = 1 - 4 a, which is positive for a < 0.25, ie dissolution for a(t=0) < 0.25
#
# The solution of the DE is
# a = eqm_const / act_coeff + (a(t=0) - eqm_const / act_coeff) exp(-rate * surf_area * molar_vol * act_coeff * t / eqm_const)
#   = 0.25 + (a(t=0) - 0.25) exp(-4 * t)
# c = c(t=0) - (a - a(t=0)) * porosity * saturation
#
# However, c(t=0) is small, so that the reaction only works until c=0, then a and c both remain fixed
#
# This test checks that (a + c / (porosity * saturation)) is time-independent, and that a follows the above solution, until c=0 and thereafter remains fixed.
#
# Aside:
#    The exponential curve is not followed exactly because moose actually solves
#    (a - a_old)/dt = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#    which does not give an exponential exactly, except in the limit dt->0
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[Variables]
  [a]
    initial_condition = 0.05
  []
[]
[AuxVariables]
  [eqm_k]
    initial_condition = 0.5
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [b]
    initial_condition = 0.123
  []
  [ini_mineral_conc]
    initial_condition = 0.015
  []
  [mineral]
    family = MONOMIAL
    order = CONSTANT
  []
  [should_be_static]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral
  []
  [should_be_static]
    type = ParsedAux
    coupled_variables = 'mineral a'
    expression = 'a + mineral / 0.1'
    variable = should_be_static
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [pre_dis]
    type = PorousFlowPreDis
    variable = a
    mineral_density = 1000
    stoichiometry = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = a
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 1
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [mass_frac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'b a'
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    primary_concentrations = a
    num_reactions = 1
    equilibrium_constants = eqm_k
    primary_activity_coefficients = 2
    reactions = 1
    specific_reactive_surface_area = 0.5
    kinetic_rate_constant = 0.6065306597126334
    activation_energy = 3
    molar_volume = 2
    gas_constant = 6
    reference_temperature = 0.5
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = ini_mineral_conc
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.4
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1E-10
  dt = 0.01
  end_time = 1
[]
[Postprocessors]
  [a]
    type = PointValue
    point = '0 0 0'
    variable = a
  []
  [should_be_static]
    type = PointValue
    point = '0 0 0'
    variable = should_be_static
  []
[]
[Outputs]
  time_step_interval = 10
  csv = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/poroperm/poro_tm.i)
# Test that porosity is correctly calculated.
# Porosity = 1 + (phi0 - 1) * exp(-vol_strain + thermal_exp_coeff * (temperature - ref_temperature))
# The parameters used are:
# phi0 = 0.5
# vol_strain = 0.5
# thermal_exp_coeff = 0.5
# temperature = 4
# ref_temperature = 3.5
# which yield porosity = 0.610599608464
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
[]
[Variables]
  [porepressure]
    initial_condition = 2
  []
  [temperature]
    initial_condition = 4
  []
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
[]
[ICs]
  [disp_x]
    type = FunctionIC
    function = '0.5 * x'
    variable = disp_x
  []
[]
[Kernels]
  [dummy_p]
    type = TimeDerivative
    variable = porepressure
  []
  [dummy_t]
    type = TimeDerivative
    variable = temperature
  []
  [dummy_x]
    type = TimeDerivative
    variable = disp_x
  []
  [dummy_y]
    type = TimeDerivative
    variable = disp_y
  []
  [dummy_z]
    type = TimeDerivative
    variable = disp_z
  []
[]
[AuxVariables]
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Postprocessors]
  [porosity]
    type = PointValue
    variable = porosity
    point = '0 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure temperature'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [total_strain]
    type = ComputeSmallStrain
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosity
    mechanical = true
    thermal = true
    ensure_positive = false
    porosity_zero = 0.5
    thermal_expansion_coeff = 0.5
    reference_temperature = 3.5
  []
[]
[Executioner]
  solve_type = Newton
  type = Transient
  num_steps = 1
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_nonisothermal.i)
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [z]
     initial_condition = 0.2
  []
  [temperature]
    initial_condition = 70
  []
[]
[AuxVariables]
  [xnacl]
    initial_condition = 0.1
  []
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [pressure_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_water]
    type = PorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = timestep_end
  []
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [enthalpy_water]
    type = PorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = timestep_end
  []
  [enthalpy_gas]
    type = PorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = timestep_end
  []
  [internal_energy_water]
    type = PorousFlowPropertyAux
    variable = internal_energy_water
    property = internal_energy
    phase = 0
    execute_on = timestep_end
  []
  [internal_energy_gas]
    type = PorousFlowPropertyAux
    variable = internal_energy_gas
    property = internal_energy
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [x0_water]
    type = PorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = timestep_end
  []
  [x0_gas]
    type = PorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [heat]
    type = TimeDerivative
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature = temperature
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
  []
  [enthalpy_water]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_water
  []
  [enthalpy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_gas
  []
  [internal_energy_water]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_water
  []
  [internal_energy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_gas
  []
  [x1_water]
    type = ElementIntegralVariablePostprocessor
    variable = x1_water
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
  []
  [x0mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [x1mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/mass_conservation/mass06.i)
# Checking that the mass postprocessor correctly calculates the mass
# of each component in each phase, as well as the total mass of each
# component in all phases. Also tests that optional saturation threshold
# gives the correct mass
# 2phase, 2component, constant porosity
# saturation_threshold set to 0.6 for phase 1
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp0_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 0
  []
  [comp0_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 1
  []
  [comp0_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
  []
  [comp1_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 0
  []
  [comp1_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 1
  []
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [comp1_phase1_threshold_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = 0.6
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1e-16
  dt = 1
  end_time = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = mass06
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/basic_advection1.i)
# Basic advection with no PorousFlow variables
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [u]
  []
[]
[AuxVariables]
  [P]
  []
[]
[ICs]
  [P]
    type = FunctionIC
    variable = P
    function = '2*(1-x)'
  []
  [u]
    type = RandomIC
    variable = u
  []
[]
[Kernels]
  [u_advection]
    type = PorousFlowBasicAdvection
    variable = u
    phase = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = ''
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 4
    thermal_expansion = 0
    viscosity = 150.0
  []
[]
[Materials]
  [temperature_qp]
    type = PorousFlowTemperature
  []
  [ppss_qp]
    type = PorousFlow1PhaseP
    porepressure = P
    capillary_pressure = pc
  []
  [simple_fluid_qp]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
  []
  [relperm_qp]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
  [darcy_velocity_qp]
    type = PorousFlowDarcyVelocityMaterial
    gravity = '0.25 0 0'
  []
[]
[Preconditioning]
  [check]
    type = SMP
    full = true
    #petsc_options = '-snes_test_display'
    petsc_options_iname = '-snes_type'
    petsc_options_value = ' test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1
[]
(modules/porous_flow/test/tests/aux_kernels/darcy_velocity_lower_2D.i)
# checking that the PorousFlowDarcyVelocityComponentLowerDimensional AuxKernel works as expected in 1D+2D situation
# for the fully-saturated case (relative-permeability = 1)
# The 1_frac_in_2D_example.e has size 0.3x0.2x0, and a fracture running through its
# centre, with normal = (0, 1, 0)
# Porepressure is initialised to grad(P) = (1, 2, 0)
# Fluid_density = 2
# viscosity = 10
# relative_permeability = 1
# permeability = (5, 5, 5)  (in the bulk, measured in m^2)
# permeability = (10, 10, 10)   (in the fracture, measured in m^3)
# aperture = 0.01
# gravity = (1, 0.5, 0)
# So Darcy velocity in the bulk = (0.5, -0.5, 0)
# in the fracture grad(P) = (1, 0, 0)
# In the fracture the projected gravity vector is
# tangential_gravity = (1, 0, 0)
# So the Darcy velocity in the fracture = (100, 0, 0)
[Mesh]
  type = FileMesh
  file = 1_frac_in_2D_example.e
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '1 0.5 0'
[]
[Variables]
  [pp]
  []
[]
[ICs]
  [pinit]
    type = FunctionIC
    function = 'x+2*y'
    variable = pp
  []
[]
[Kernels]
  [dummy]
    type = TimeDerivative
    variable = pp
  []
[]
[AuxVariables]
  [bulk_vel_x]
    order = CONSTANT
    family = MONOMIAL
    block = '2 3'
  []
  [bulk_vel_y]
    order = CONSTANT
    family = MONOMIAL
    block = '2 3'
  []
  [bulk_vel_z]
    order = CONSTANT
    family = MONOMIAL
    block = '2 3'
  []
  [fracture_vel_x]
    order = CONSTANT
    family = MONOMIAL
    block = 1
  []
  [fracture_vel_y]
    order = CONSTANT
    family = MONOMIAL
    block = 1
  []
  [fracture_vel_z]
    order = CONSTANT
    family = MONOMIAL
    block = 1
  []
[]
[AuxKernels]
  [bulk_vel_x]
    type = PorousFlowDarcyVelocityComponent
    variable = bulk_vel_x
    component = x
    fluid_phase = 0
  []
  [bulk_vel_y]
    type = PorousFlowDarcyVelocityComponent
    variable = bulk_vel_y
    component = y
    fluid_phase = 0
  []
  [bulk_vel_z]
    type = PorousFlowDarcyVelocityComponent
    variable = bulk_vel_z
    component = z
    fluid_phase = 0
  []
  [fracture_vel_x]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_x
    component = x
    fluid_phase = 0
    aperture = 0.01
  []
  [fracture_vel_y]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_y
    component = y
    fluid_phase = 0
    aperture = 0.01
  []
  [fracture_vel_z]
    type = PorousFlowDarcyVelocityComponentLowerDimensional
    variable = fracture_vel_z
    component = z
    fluid_phase = 0
    aperture = 0.01
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1E16
    viscosity = 10
    density0 = 2
    thermal_expansion = 0
  []
[]
[Postprocessors]
  [bulk_vel_x]
    type = PointValue
    variable = bulk_vel_x
    point = '0 -0.05 0'
  []
  [bulk_vel_y]
    type = PointValue
    variable = bulk_vel_y
    point = '0 -0.05 0'
  []
  [bulk_vel_z]
    type = PointValue
    variable = bulk_vel_z
    point = '0 -0.05 0'
  []
  [fracture_vel_x]
    type = PointValue
    point = '0 0 0'
    variable = fracture_vel_x
  []
  [fracture_vel_y]
    type = PointValue
    point = '0 0 0'
    variable = fracture_vel_y
  []
  [fracture_vel_z]
    type = PointValue
    point = '0 0 0'
    variable = fracture_vel_z
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
    block = '2 3'
  []
  [permeability_fracture]
    type = PorousFlowPermeabilityConst
    permeability = '10 0 0 0 10 0 0 0 10'
    block = 1
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
[]
[Executioner]
  type = Transient
  dt = 1
  end_time = 1
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/basic_advection/except1.i)
# phase number is too high in PorousFlowBasicAdvection
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [u]
  []
[]
[AuxVariables]
  [P]
  []
[]
[ICs]
  [P]
    type = FunctionIC
    variable = P
    function = '2*(1-x)'
  []
  [u]
    type = FunctionIC
    variable = u
    function = 'if(x<0.1,1,0)'
  []
[]
[Kernels]
  [u_dot]
    type = TimeDerivative
    variable = u
  []
  [u_advection]
    type = PorousFlowBasicAdvection
    variable = u
    phase = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = ''
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 4
    thermal_expansion = 0
    viscosity = 150.0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = P
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
  [darcy_velocity]
    type = PorousFlowDarcyVelocityMaterial
    gravity = '0.25 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 1
    variable = u
  []
  [right]
    type = DirichletBC
    boundary = right
    value = 0
    variable = u
  []
[]
[Preconditioning]
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -snes_rtol'
    petsc_options_value = ' lu       1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 5
[]
[Outputs]
  exodus = true
  print_linear_residuals = false
[]
(modules/porous_flow/test/tests/jacobian/diff03.i)
# Test the Jacobian of the diffusive component of the PorousFlowDisperiveFlux kernel for two phases.
# By setting disp_long and disp_trans to zero, the purely diffusive component of the flux
# can be isolated. Uses saturation-dependent tortuosity and diffusion coefficients from the
# Millington-Quirk model
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [sgas]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [massfrac1]
  []
[]
[ICs]
  [sgas]
    type = RandomIC
    variable = sgas
    max = 1
    min = 0
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 1
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 1
  []
[]
[Kernels]
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = sgas
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'sgas massfrac0'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 10
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 0.1
  []
[]
[Materials]
  [temp]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = 1
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [diff]
    type = PorousFlowDiffusivityMillingtonQuirk
    diffusion_coeff = '1e-2 1e-1 1e-2 1e-1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[Preconditioning]
  active = smp
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D_adaptivity.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 1D version with adaptivity
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[Adaptivity]
  initial_steps = 1
  initial_marker = tracer_marker
  marker = tracer_marker
  max_h_level = 1
  [Markers]
    [tracer_marker]
      type = ValueRangeMarker
      variable = tracer
      lower_bound = 0.02
      upper_bound = 0.98
    []
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 11
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-2
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/pffltvd_1D.i)
# Using flux-limited TVD advection ala Kuzmin and Turek, mploying PorousFlow Kernels and UserObjects, with superbee flux-limiter
# 1D version
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [porepressure]
  []
  [tracer]
  []
[]
[ICs]
  [porepressure]
    type = FunctionIC
    variable = porepressure
    function = '1 - x'
  []
  [tracer]
    type = FunctionIC
    variable = tracer
    function = 'if(x<0.1,0,if(x>0.3,0,1))'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = tracer
  []
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = tracer
    advective_flux_calculator = advective_flux_calculator_0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = porepressure
  []
  [flux1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = porepressure
    advective_flux_calculator = advective_flux_calculator_1
  []
[]
[BCs]
  [constant_injection_porepressure]
    type = DirichletBC
    variable = porepressure
    value = 1
    boundary = left
  []
  [no_tracer_on_left]
    type = DirichletBC
    variable = tracer
    value = 0
    boundary = left
  []
  [remove_component_1]
    type = PorousFlowPiecewiseLinearSink
    variable = porepressure
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 1
    use_mobility = true
    flux_function = 1E3
  []
  [remove_component_0]
    type = PorousFlowPiecewiseLinearSink
    variable = tracer
    boundary = right
    fluid_phase = 0
    pt_vals = '0 1E3'
    multipliers = '0 1E3'
    mass_fraction_component = 0
    use_mobility = true
    flux_function = 1E3
  []
[]
[FluidProperties]
  [the_simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2E9
    thermal_expansion = 0
    viscosity = 1.0
    density0 = 1000.0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure tracer'
    number_fluid_phases = 1
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator_0]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 0
  []
  [advective_flux_calculator_1]
    type = PorousFlowAdvectiveFluxCalculatorSaturatedMultiComponent
    flux_limiter_type = superbee
    fluid_component = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = tracer
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = the_simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosity
    porosity_zero = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1E-2 0 0   0 1E-2 0   0 0 1E-2'
  []
[]
[Preconditioning]
  active = basic
  [basic]
    type = SMP
    full = true
    petsc_options = '-ksp_diagonal_scale -ksp_diagonal_scale_fix'
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap'
    petsc_options_value = ' asm      lu           NONZERO                   2'
  []
  [preferred_but_might_not_be_installed]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_mat_solver_package'
    petsc_options_value = ' lu       mumps'
  []
[]
[VectorPostprocessors]
  [tracer]
    type = LineValueSampler
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 11
    sort_by = x
    variable = tracer
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 6
  dt = 6E-2
  nl_abs_tol = 1E-8
  timestep_tolerance = 1E-3
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/sinks/s12.i)
# The PorousFlowEnthalpy sink adds heat energy corresponding to injecting a 1kg/s/m^2 (flux_function = -1)
# of fluid at pressure 0.5 (given by the AuxVariable p_aux) and the input temperature is 300 (given by the T_in parameter).
# SimpleFluidProperties are used, with density0 = 10, bulk_modulus = 1, thermal_expansion = 0, and cv = 1E-4
# density = 10 * exp(0.5 / 1 + 0) = 16.4872
# internal energy = 1E-4 * 300 = 0.03
# enthalpy = 0.03 + 0.5/16.3872 = 0.0603265
# This is applied over an area of 100, so the total energy flux is 6.03265 J/s.
# This the the rate of change of the heat energy reported by the PorousFlowHeatEnergy Postprocessor
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 2
  ny = 2
  nz = 2
  xmin = 0
  xmax = 10
  ymin = 0
  ymax = 10
  zmin = 0
  zmax = 10
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp temp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[AuxVariables]
  [p_aux]
    initial_condition = 0.5
  []
[]
[Variables]
  [pp]
    initial_condition = 1
  []
  [temp]
    initial_condition = 2
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [heat_conduction]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 10
    thermal_expansion = 0
    cv = 1E-4
  []
[]
[Materials]
  [ppss]
    type = PorousFlow1PhaseFullySaturated
    porepressure = pp
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 2
    density = 3
  []
[]
[BCs]
  [left_p]
    type = PorousFlowSink
    variable = pp
    boundary = left
    flux_function = -1
  []
  [left_T]
    type = PorousFlowEnthalpySink
    variable = temp
    boundary = left
    T_in = 300
    fp = simple_fluid
    flux_function = -1
    porepressure_var = p_aux
  []
[]
[Postprocessors]
  [total_heat_energy]
    type = PorousFlowHeatEnergy
    phase = 0
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.25
  num_steps = 2
[]
[Outputs]
  file_base = s12
  [csv]
    type = CSV
  []
[]
(modules/porous_flow/test/tests/fluidstate/brineco2_2.i)
# Injection of supercritical CO2 into a single brine saturated cell. The CO2 initially fully
# dissolves into the brine, increasing its density slightly. After a few time steps,
# the brine is saturated with CO2, and subsequently a supercritical gas phase of CO2 saturated
# with a small amount of H2O is formed. Salt is included as a nonlinear variable.
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  temperature = 30
[]
[Variables]
  [pgas]
    initial_condition = 20e6
  []
  [z]
  []
  [xnacl]
    initial_condition = 0.1
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    variable = z
    point = '0.5 0.5 0'
    mass_flux = 2
  []
[]
[BCs]
  [left]
    type = DirichletBC
    value = 20e6
    variable = pgas
    boundary = left
  []
  [right]
    type = DirichletBC
    value = 20e6
    variable = pgas
    boundary = right
  []
[]
[AuxVariables]
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [pressure_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_water]
    type = PorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = 'initial timestep_end'
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [x0_water]
    type = PorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [x0_gas]
    type = PorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
  [mass2]
    type = PorousFlowMassTimeDerivative
    variable = xnacl
    fluid_component = 2
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z xnacl'
    number_fluid_phases = 2
    number_fluid_components = 3
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowBrineCO2
    brine_fp = brine
    co2_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [brine]
    type = BrineFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [brineco2]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    xnacl = xnacl
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 10
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
    execute_on = 'initial timestep_end'
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
    execute_on = 'initial timestep_end'
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
    execute_on = 'initial timestep_end'
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
    execute_on = 'initial timestep_end'
  []
  [x1_water]
    type = ElementIntegralVariablePostprocessor
    variable = x1_water
    execute_on = 'initial timestep_end'
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
    execute_on = 'initial timestep_end'
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
    execute_on = 'initial timestep_end'
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
    execute_on = 'initial timestep_end'
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
    execute_on = 'initial timestep_end'
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
    execute_on = 'initial timestep_end'
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
    execute_on = 'initial timestep_end'
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
    execute_on = 'initial timestep_end'
  []
  [xnacl]
    type = ElementIntegralVariablePostprocessor
    variable = xnacl
    execute_on = 'initial timestep_end'
  []
  [x0mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
    execute_on = 'initial timestep_end'
  []
  [x1mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
    execute_on = 'initial timestep_end'
  []
  [x2mass]
    type = PorousFlowFluidMass
    fluid_component = 2
    phase = '0 1'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  csv = true
  file_base = brineco2_2
  execute_on = 'initial timestep_end'
  perf_graph = true
[]
(modules/porous_flow/test/tests/fluidstate/waterncg.i)
# Tests correct calculation of properties in PorousFlowWaterNCG.
# This test is run three times, with the initial condition of z (the total mass
# fraction of NCG in all phases) varied to give either a single phase liquid, a
# single phase gas, or two phases.
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 2
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pgas]
    initial_condition = 1e6
  []
  [z]
     initial_condition = 0.005
  []
[]
[AuxVariables]
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [pressure_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [internal_energy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x0_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_water]
    type = PorousFlowPropertyAux
    variable = pressure_water
    property = pressure
    phase = 0
    execute_on = timestep_end
  []
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [enthalpy_water]
    type = PorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = timestep_end
  []
  [enthalpy_gas]
    type = PorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = timestep_end
  []
  [internal_energy_water]
    type = PorousFlowPropertyAux
    variable = internal_energy_water
    property = internal_energy
    phase = 0
    execute_on = timestep_end
  []
  [internal_energy_gas]
    type = PorousFlowPropertyAux
    variable = internal_energy_gas
    property = internal_energy
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [x0_water]
    type = PorousFlowPropertyAux
    variable = x0_water
    property = mass_fraction
    phase = 0
    fluid_component = 0
    execute_on = timestep_end
  []
  [x0_gas]
    type = PorousFlowPropertyAux
    variable = x0_gas
    property = mass_fraction
    phase = 1
    fluid_component = 0
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    temperature_unit = Celsius
    capillary_pressure = pc
    fluid_state = fs
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [density_water]
    type = ElementIntegralVariablePostprocessor
    variable = density_water
  []
  [density_gas]
    type = ElementIntegralVariablePostprocessor
    variable = density_gas
  []
  [viscosity_water]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_water
  []
  [viscosity_gas]
    type = ElementIntegralVariablePostprocessor
    variable = viscosity_gas
  []
  [enthalpy_water]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_water
  []
  [enthalpy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = enthalpy_gas
  []
  [internal_energy_water]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_water
  []
  [internal_energy_gas]
    type = ElementIntegralVariablePostprocessor
    variable = internal_energy_gas
  []
  [x1_water]
    type = ElementIntegralVariablePostprocessor
    variable = x1_water
  []
  [x0_water]
    type = ElementIntegralVariablePostprocessor
    variable = x0_water
  []
  [x1_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x1_gas
  []
  [x0_gas]
    type = ElementIntegralVariablePostprocessor
    variable = x0_gas
  []
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
  []
  [pwater]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_water
  []
  [pgas]
    type = ElementIntegralVariablePostprocessor
    variable = pressure_gas
  []
  [x0mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [x1mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Outputs]
  exodus = true
  file_base = waterncg_liquid
[]
(modules/porous_flow/test/tests/fluidstate/waterncg_ic.i)
# Tests correct calculation of z (total mass fraction of NCG summed over all
# phases) using the PorousFlowFluidStateIC initial condition. Once z is
# calculated by the initial condition, the thermophysical properties are calculated
# and the resulting gas saturation should be equal to that given in the intial condition
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  temperature_unit = Celsius
[]
[Variables]
  [pgas]
    initial_condition = 1e6
  []
  [z]
  []
[]
[ICs]
  [z]
    type = PorousFlowFluidStateIC
    saturation = 0.5
    gas_porepressure = pgas
    temperature = 50
    variable = z
    fluid_state = fs
  []
[]
[AuxVariables]
  [saturation_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [saturation_gas]
    type = PorousFlowPropertyAux
    variable = saturation_gas
    property = saturation
    phase = 1
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pgas
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = z
    fluid_component = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pgas z'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
  [fs]
    type = PorousFlowWaterNCG
    water_fp = water
    gas_fp = co2
    capillary_pressure = pc
  []
[]
[FluidProperties]
  [co2]
    type = CO2FluidProperties
  []
  [water]
    type = Water97FluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [waterncg]
    type = PorousFlowFluidState
    gas_porepressure = pgas
    z = z
    fluid_state = fs
    capillary_pressure = pc
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Postprocessors]
  [sg]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_gas
    execute_on = 'initial timestep_end'
  []
  [sw]
    type = ElementIntegralVariablePostprocessor
    variable = saturation_water
    execute_on = 'initial timestep_end'
  []
  [z]
    type = ElementIntegralVariablePostprocessor
    variable = z
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_KT.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
# Using KT stabilization
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass_component0]
    type = PorousFlowMassTimeDerivative
    variable = ppwater
    fluid_component = 0
  []
  [flux_component0_phase0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = ppwater
    advective_flux_calculator = afc_component0_phase0
  []
  [flux_component0_phase1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = ppwater
    advective_flux_calculator = afc_component0_phase1
  []
  [mass_component1]
    type = PorousFlowMassTimeDerivative
    variable = sgas
    fluid_component = 1
  []
  [flux_component1_phase0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = sgas
    advective_flux_calculator = afc_component1_phase0
  []
  [flux_component1_phase1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = sgas
    advective_flux_calculator = afc_component1_phase1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
  [afc_component0_phase0]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 0
    phase = 0
    flux_limiter_type = superbee
  []
  [afc_component0_phase1]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 0
    phase = 1
    flux_limiter_type = superbee
  []
  [afc_component1_phase0]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 1
    phase = 0
    flux_limiter_type = superbee
  []
  [afc_component1_phase1]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 1
    phase = 1
    flux_limiter_type = superbee
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS_KT
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/basic_advection/1phase.i)
# Basic advection of u in a 1-phase situation
#
# grad(P) = -2
# density * gravity = 4 * 0.25
# grad(P) - density * gravity = -3
# permeability = 5
# viscosity = 150
# so Darcy velocity = 0.1
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [u]
  []
[]
[AuxVariables]
  [P]
  []
[]
[ICs]
  [P]
    type = FunctionIC
    variable = P
    function = '2*(1-x)'
  []
  [u]
    type = FunctionIC
    variable = u
    function = 'if(x<0.1,1,0)'
  []
[]
[Kernels]
  [u_dot]
    type = TimeDerivative
    variable = u
  []
  [u_advection]
    type = PorousFlowBasicAdvection
    variable = u
    phase = 0
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = ''
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 4
    thermal_expansion = 0
    viscosity = 150.0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = P
    capillary_pressure = pc
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '5 0 0 0 5 0 0 0 5'
  []
  [relperm]
    type = PorousFlowRelativePermeabilityCorey
    n = 0
    phase = 0
  []
  [darcy_velocity]
    type = PorousFlowDarcyVelocityMaterial
    gravity = '0.25 0 0'
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 1
    variable = u
  []
  [right]
    type = DirichletBC
    boundary = right
    value = 0
    variable = u
  []
[]
[Preconditioning]
  [basic]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -snes_rtol'
    petsc_options_value = ' lu       1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 5
[]
[Outputs]
  exodus = true
  print_linear_residuals = false
[]
(modules/porous_flow/test/tests/flux_limited_TVD_pflow/jacobian_01.i)
# Checking the Jacobian of Flux-Limited TVD Advection, 1 phase, 1 component, full saturation, using flux_limiter_type = none
# This is quite a heavy test, but we need a fairly big mesh to check the upwinding is happening correctly
[Mesh]
  type = GeneratedMesh
  dim = 3
  nx = 3
  xmin = 0
  xmax = 1
  ny = 4
  ymin = -1
  ymax = 2
  bias_y = 1.5
  nz = 4
  zmin = 1
  zmax = 2
  bias_z = 0.8
[]
[GlobalParams]
  gravity = '1 2 -0.5'
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
[]
[ICs]
  [pp]
    variable = pp
    type = RandomIC
    min = 1
    max = 2
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = pp
    advective_flux_calculator = advective_flux_calculator
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.4
    viscosity = 1.1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
  [advective_flux_calculator]
    type = PorousFlowAdvectiveFluxCalculatorSaturated
    flux_limiter_type = None
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = pp
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
  []
  [simple_fluid]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [relperm]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1.21 0 0  0 1.5 0  0 0 0.8'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-snes_type'
    petsc_options_value = 'test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1
  num_steps = 1
  dt = 1
[]
(modules/porous_flow/test/tests/gravity/grav02e.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, constant capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with no residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [relpermwater]
    family = MONOMIAL
    order = FIRST
  []
  [relpermgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e4
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02e
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/test/tests/relperm/brooks_corey2.i)
# Test Brooks-Corey relative permeability curve by varying saturation over the mesh
# Exponent lambda = 2 for both phases
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = 0.2
    sum_s_res = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    lambda = 2
    nw_phase = true
    s_res = 0.3
    sum_s_res = 0.5
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/poroperm/except1.i)
# Exception test: thermal=true but no thermal_expansion_coeff provided
[Mesh]
  type = GeneratedMesh
  dim = 3
[]
[GlobalParams]
  PorousFlowDictator = dictator
  displacements = 'disp_x disp_y disp_z'
  biot_coefficient = 0.7
[]
[Variables]
  [porepressure]
    initial_condition = 2
  []
  [temperature]
    initial_condition = 4
  []
  [disp_x]
  []
  [disp_y]
  []
  [disp_z]
  []
[]
[ICs]
  [disp_x]
    type = FunctionIC
    function = '0.5 * x'
    variable = disp_x
  []
[]
[Kernels]
  [dummy_p]
    type = TimeDerivative
    variable = porepressure
  []
  [dummy_t]
    type = TimeDerivative
    variable = temperature
  []
  [dummy_x]
    type = TimeDerivative
    variable = disp_x
  []
  [dummy_y]
    type = TimeDerivative
    variable = disp_y
  []
  [dummy_z]
    type = TimeDerivative
    variable = disp_z
  []
[]
[AuxVariables]
  [porosity]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [porosity]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Postprocessors]
  [porosity]
    type = PointValue
    variable = porosity
    point = '0 0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'porepressure temperature'
    number_fluid_phases = 1
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [ppss]
    type = PorousFlow1PhaseP
    porepressure = porepressure
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosity
    mechanical = true
    fluid = true
    thermal = true
    ensure_positive = false
    porosity_zero = 0.5
    solid_bulk = 0.3
    reference_porepressure = 3
    reference_temperature = 3.5
  []
[]
[Executioner]
  solve_type = Newton
  type = Transient
  num_steps = 1
[]
[Outputs]
  csv = true
[]