- P_hfheat flux perimeter
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:heat flux perimeter
 
ADHeatRateConvection1Phase
Computes convective heat rate into a 1-phase flow channel
The heat convective heat rate is the integral of the convective heat flux over the flow channel / subdomains specified in the "block" parameter.
where is the wall heat transfer coefficient, is the wetted perimeter, is the fluid temperature and is the wall temperature.
Input Parameters
- HwHwWall heat transfer coefficient
Default:Hw
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Wall heat transfer coefficient
 - TTTemperature of the fluid on the channel side
Default:T
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Temperature of the fluid on the channel side
 - T_wallT_wallWall temperature
Default:T_wall
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:Wall temperature
 - blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
 
Optional Parameters
- allow_duplicate_execution_on_initialFalseIn the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
Default:False
C++ Type:bool
Controllable:No
Description:In the case where this UserObject is depended upon by an initial condition, allow it to be executed twice during the initial setup (once before the IC and again after mesh adaptivity (if applicable).
 - execute_onTIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, TRANSFER
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
 - execution_order_group0Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
Default:0
C++ Type:int
Controllable:No
Description:Execution order groups are executed in increasing order (e.g., the lowest number is executed first). Note that negative group numbers may be used to execute groups before the default (0) group. Please refer to the user object documentation for ordering of user object execution within a group.
 - force_postauxFalseForces the UserObject to be executed in POSTAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in POSTAUX
 - force_preauxFalseForces the UserObject to be executed in PREAUX
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREAUX
 - force_preicFalseForces the UserObject to be executed in PREIC during initial setup
Default:False
C++ Type:bool
Controllable:No
Description:Forces the UserObject to be executed in PREIC during initial setup
 
Execution Scheduling Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
 - outputsVector of output names where you would like to restrict the output of variables(s) associated with this object
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
 - seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
 - use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
 
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
 - use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
 
Material Property Retrieval Parameters
Input Files
- (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
 - (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
 - (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
 - (modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/phy.energy_walltemperature_ss_1phase.i)
 - (modules/thermal_hydraulics/test/tests/problems/brayton_cycle/closed_brayton_cycle.i)
 - (modules/thermal_hydraulics/test/tests/postprocessors/heat_rate_convection_1phase/heat_rate_convection_1phase.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
 
block
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_3d/phy.conservation_ss.i)
# Testing energy conservation at steady state
P_hf = ${fparse 0.6 * sin (pi/24)}
[GlobalParams]
  scaling_factor_1phase = '1 1 1e-3'
  gravity_vector = '0 0 0'
[]
[Materials]
  [mat]
    type = ADGenericConstantMaterial
    block = 'blk:0'
    prop_names = 'density specific_heat thermal_conductivity'
    prop_values = '1000 10 30'
  []
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [in1]
    type = InletVelocityTemperature1Phase
    input = 'fch1:in'
    vel = 1
    T = 300
  []
  [fch1]
    type = FlowChannel1Phase
    position = '0.15 0 0'
    orientation = '0 0 1'
    fp = fp
    n_elems = 10
    length = 1
    initial_T = 300
    initial_p = 1.01e5
    initial_vel = 1
    closures = simple_closures
    A = 0.00314159
    f = 0.0
  []
  [out1]
    type = Outlet1Phase
    input = 'fch1:out'
    p = 1.01e5
  []
  [in2]
    type = InletVelocityTemperature1Phase
    input = 'fch2:in'
    vel = 1
    T = 350
  []
  [fch2]
    type = FlowChannel1Phase
    position = '0 0.15 0'
    orientation = '0 0 1'
    fp = fp
    n_elems = 10
    length = 1
    initial_T = 350
    initial_p = 1.01e5
    initial_vel = 1
    closures = simple_closures
    A = 0.00314159
    f = 0
  []
  [out2]
    type = Outlet1Phase
    input = 'fch2:out'
    p = 1.01e5
  []
  [blk]
    type = HeatStructureFromFile3D
    file = mesh.e
    position = '0 0 0'
    initial_T = 325
  []
  [ht]
    type = HeatTransferFromHeatStructure3D1Phase
    flow_channels = 'fch1 fch2'
    hs = blk
    boundary = blk:rmin
    Hw = 10000
    P_hf = ${P_hf}
  []
[]
[Postprocessors]
  [E_in1]
    type = ADFlowBoundaryFlux1Phase
    boundary = in1
    equation = energy
    execute_on = 'initial timestep_end'
  []
  [E_out1]
    type = ADFlowBoundaryFlux1Phase
    boundary = out1
    equation = energy
    execute_on = 'initial timestep_end'
  []
  [hf_pipe1]
    type = ADHeatRateConvection1Phase
    block = fch1
    T_wall = T_wall
    T = T
    Hw = Hw
    P_hf = ${P_hf}
    execute_on = 'initial timestep_end'
  []
  [E_diff1]
    type = DifferencePostprocessor
    value1 = E_in1
    value2 = E_out1
    execute_on = 'initial timestep_end'
  []
  [E_conservation1]
    type = SumPostprocessor
    values = 'E_diff1 hf_pipe1'
  []
  [E_in2]
    type = ADFlowBoundaryFlux1Phase
    boundary = in2
    equation = energy
    execute_on = 'initial timestep_end'
  []
  [E_out2]
    type = ADFlowBoundaryFlux1Phase
    boundary = out2
    equation = energy
    execute_on = 'initial timestep_end'
  []
  [hf_pipe2]
    type = ADHeatRateConvection1Phase
    block = fch2
    T_wall = T_wall
    T = T
    Hw = Hw
    P_hf = ${P_hf}
    execute_on = 'initial timestep_end'
  []
  [E_diff2]
    type = DifferencePostprocessor
    value1 = E_in2
    value2 = E_out2
    execute_on = 'initial timestep_end'
  []
  [E_conservation2]
    type = SumPostprocessor
    values = 'E_diff2 hf_pipe2'
  []
  [E_conservation_hs]
    type = SumPostprocessor
    values = 'hf_pipe1 hf_pipe2'
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = bdf2
  dt = 5
  end_time = 100
  solve_type = NEWTON
  line_search = basic
  abort_on_solve_fail = true
  nl_abs_tol = 1e-8
[]
[Outputs]
  file_base = 'phy.conservation_ss'
  [csv]
    type = CSV
    show = 'E_conservation1 E_conservation2 E_conservation_hs'
    execute_on = 'FINAL'
  []
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/open_brayton_cycle.i)
# This input file is used to demonstrate a simple open-air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 5 segments as illustrated below, where
#   - "(I)" denotes the inlet
#   - "(C)" denotes the compressor
#   - "(T)" denotes the turbine
#   - "(O)" denotes the outlet
#   - "*" denotes a fictitious junction
#
#                  Heated section
# (I)-----(C)-----*--------------*-----(T)-----(O)
#      1       2         3          4       5
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
#   * 0   - 100 s: motor ramps up torque linearly from zero
#   * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
#   * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
  orientation = '1 0 0'
  gravity_vector = '0 0 0'
  initial_p = ${p_ambient}
  initial_T = ${T_ambient}
  initial_vel = 0
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  fp = fp_air
  closures = closures
  f = 0
  scaling_factor_1phase = '1 1 1e-5'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1
  scaling_factor_rhovV = 1
  scaling_factor_rhowV = 1
  scaling_factor_rhoEV = 1e-5
  rdg_slope_reconstruction = none
[]
[Functions]
  [motor_torque_fn]
    type = PiecewiseLinear
    x = '0 ${t1} ${t2}'
    y = '0 ${motor_torque_max} 0'
  []
  [motor_power_fn]
    type = ParsedFunction
    expression = 'torque * speed'
    symbol_names = 'torque speed'
    symbol_values = 'motor_torque shaft:omega'
  []
  [generator_torque_fn]
    type = ParsedFunction
    expression = 'slope * t'
    symbol_names = 'slope'
    symbol_values = '${generator_torque_per_shaft_speed}'
  []
  [generator_power_fn]
    type = ParsedFunction
    expression = 'torque * speed'
    symbol_names = 'torque speed'
    symbol_values = 'generator_torque shaft:omega'
  []
  [htc_wall_fn]
    type = PiecewiseLinear
    x = '0 ${t1} ${t2}'
    y = '0 0 1e3'
  []
[]
[FluidProperties]
  [fp_air]
    type = IdealGasFluidProperties
    emit_on_nan = none
  []
[]
[Closures]
  [closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [shaft]
    type = Shaft
    connected_components = 'motor compressor turbine generator'
    initial_speed = ${speed_initial}
  []
  [motor]
    type = ShaftConnectedMotor
    inertia = ${I_motor}
    torque = 0 # controlled
  []
  [generator]
    type = ShaftConnectedMotor
    inertia = ${I_generator}
    torque = generator_torque_fn
  []
  [inlet]
    type = InletStagnationPressureTemperature1Phase
    input = 'pipe1:in'
    p0 = ${p_ambient}
    T0 = ${T_ambient}
  []
  [pipe1]
    type = FlowChannel1Phase
    position = '${x1} 0 0'
    length = ${L1}
    n_elems = ${n_elems1}
    A = ${A1}
  []
  [compressor]
    type = ShaftConnectedCompressor1Phase
    position = '${x2} 0 0'
    inlet = 'pipe1:out'
    outlet = 'pipe2:in'
    A_ref = ${A_ref_comp}
    volume = ${V_comp}
    omega_rated = ${speed_rated}
    mdot_rated = ${rated_mfr}
    c0_rated = ${c0_rated_comp}
    rho0_rated = ${rho0_rated_comp}
    speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
    Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
    eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
    min_pressure_ratio = 1.0
    speed_cr_I = 0
    inertia_const = ${I_comp}
    inertia_coeff = '${I_comp} 0 0 0'
    # assume no shaft friction
    speed_cr_fr = 0
    tau_fr_const = 0
    tau_fr_coeff = '0 0 0 0'
  []
  [pipe2]
    type = FlowChannel1Phase
    position = '${x2} 0 0'
    length = ${L2}
    n_elems = ${n_elems2}
    A = ${A2}
  []
  [junction2_3]
    type = JunctionOneToOne1Phase
    connections = 'pipe2:out pipe3:in'
  []
  [pipe3]
    type = FlowChannel1Phase
    position = '${x3} 0 0'
    length = ${L3}
    n_elems = ${n_elems3}
    A = ${A3}
  []
  [junction3_4]
    type = JunctionOneToOne1Phase
    connections = 'pipe3:out pipe4:in'
  []
  [pipe4]
    type = FlowChannel1Phase
    position = '${x4} 0 0'
    length = ${L4}
    n_elems = ${n_elems4}
    A = ${A4}
  []
  [turbine]
    type = ShaftConnectedCompressor1Phase
    position = '${x5} 0 0'
    inlet = 'pipe4:out'
    outlet = 'pipe5:in'
    A_ref = ${A_ref_turb}
    volume = ${V_turb}
    treat_as_turbine = true
    omega_rated = ${speed_rated}
    mdot_rated = ${rated_mfr}
    c0_rated = ${c0_rated_comp}
    rho0_rated = ${rho0_rated_comp}
    speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
    Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
    eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
    min_pressure_ratio = 1.0
    speed_cr_I = 0
    inertia_const = ${I_turb}
    inertia_coeff = '${I_turb} 0 0 0'
    # assume no shaft friction
    speed_cr_fr = 0
    tau_fr_const = 0
    tau_fr_coeff = '0 0 0 0'
  []
  [pipe5]
    type = FlowChannel1Phase
    position = '${x5} 0 0'
    length = ${L5}
    n_elems = ${n_elems5}
    A = ${A5}
  []
  [outlet]
    type = Outlet1Phase
    input = 'pipe5:out'
    p = ${p_ambient}
  []
  [heating]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = pipe3
    T_wall = ${T_hot}
    Hw = htc_wall_fn
  []
[]
[ControlLogic]
  [motor_ctrl]
    type = TimeFunctionComponentControl
    component = motor
    parameter = torque
    function = motor_torque_fn
  []
[]
[Postprocessors]
  [heating_rate]
    type = ADHeatRateConvection1Phase
    block = 'pipe3'
    T = T
    T_wall = T_wall
    Hw = Hw
    P_hf = P_hf
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [motor_torque]
    type = RealComponentParameterValuePostprocessor
    component = motor
    parameter = torque
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [motor_power]
    type = FunctionValuePostprocessor
    function = motor_power_fn
    execute_on = 'INITIAL TIMESTEP_END'
    indirect_dependencies = 'motor_torque shaft:omega'
  []
  [generator_torque]
    type = ShaftConnectedComponentPostprocessor
    quantity = torque
    shaft_connected_component_uo = generator:shaftconnected_uo
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [generator_power]
    type = FunctionValuePostprocessor
    function = generator_power_fn
    execute_on = 'INITIAL TIMESTEP_END'
    indirect_dependencies = 'generator_torque shaft:omega'
  []
  [shaft_speed]
    type = ScalarVariable
    variable = 'shaft:omega'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_in_comp]
    type = PointValue
    variable = p
    point = '${x2_minus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_out_comp]
    type = PointValue
    variable = p
    point = '${x2_plus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_ratio_comp]
    type = ParsedPostprocessor
    pp_names = 'p_in_comp p_out_comp'
    expression = 'p_out_comp / p_in_comp'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_in_turb]
    type = PointValue
    variable = p
    point = '${x5_minus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_out_turb]
    type = PointValue
    variable = p
    point = '${x5_plus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_ratio_turb]
    type = ParsedPostprocessor
    pp_names = 'p_in_turb p_out_turb'
    expression = 'p_in_turb / p_out_turb'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [mfr_comp]
    type = ADFlowJunctionFlux1Phase
    boundary = pipe1:out
    connection_index = 0
    equation = mass
    junction = compressor
  []
  [mfr_turb]
    type = ADFlowJunctionFlux1Phase
    boundary = pipe4:out
    connection_index = 0
    equation = mass
    junction = turbine
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'bdf2'
  end_time = ${t3}
  dt = 0.1
  abort_on_solve_fail = true
  solve_type = NEWTON
  nl_rel_tol = 1e-50
  nl_abs_tol = 1e-11
  nl_max_its = 15
  l_tol = 1e-4
  l_max_its = 10
[]
[Outputs]
  [csv]
    type = CSV
    file_base = 'open_brayton_cycle'
    execute_vector_postprocessors_on = 'INITIAL'
  []
  [console]
    type = Console
    show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
  []
[]
[Functions]
  # compressor pressure ratio
  [rp_comp1]
    type = PiecewiseLinear
    data_file = 'rp_comp1.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp2]
    type = PiecewiseLinear
    data_file = 'rp_comp2.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp3]
    type = PiecewiseLinear
    data_file = 'rp_comp3.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp4]
    type = PiecewiseLinear
    data_file = 'rp_comp4.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp5]
    type = PiecewiseLinear
    data_file = 'rp_comp5.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  # compressor efficiency
  [eff_comp1]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp2]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp3]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp4]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp5]
    type = ConstantFunction
    value = ${eff_comp}
  []
  # turbine pressure ratio
  [rp_turb0]
    type = ConstantFunction
    value = 1
  []
  [rp_turb1]
    type = PiecewiseLinear
    data_file = 'rp_turb1.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb2]
    type = PiecewiseLinear
    data_file = 'rp_turb2.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb3]
    type = PiecewiseLinear
    data_file = 'rp_turb3.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb4]
    type = PiecewiseLinear
    data_file = 'rp_turb4.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb5]
    type = PiecewiseLinear
    data_file = 'rp_turb5.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  # turbine efficiency
  [eff_turb1]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb2]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb3]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb4]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb5]
    type = ConstantFunction
    value = ${eff_turb}
  []
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_heat_structure_1phase/phy.energy_heatstructure_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when a
# heat structure is used. Conservation is checked by comparing the integral of
# the heat flux against the difference of the boundary fluxes.
[GlobalParams]
  initial_p = 7.0e6
  initial_vel = 0
  initial_T = 513
  gravity_vector = '0.0 0.0 0.0'
  scaling_factor_1phase = '1 1 1e-4'
  closures = simple_closures
[]
[FluidProperties]
  [eos]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[SolidProperties]
  [fuel-mat]
    type = ThermalFunctionSolidProperties
    k = 3.7
    cp = 3.e2
    rho = 10.42e3
  []
  [gap-mat]
    type = ThermalFunctionSolidProperties
    k = 0.7
    cp = 5e3
    rho = 1.0
  []
  [clad-mat]
    type = ThermalFunctionSolidProperties
    k = 16
    cp = 356.
    rho = 6.551400E+03
  []
[]
[Components]
  [reactor]
    type = TotalPower
    power = 1e3
  []
  [core:pipe]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 3.66
    n_elems = 10
    A = 1.907720E-04
    D_h = 1.698566E-02
    f = 0.0
    fp = eos
  []
  [core:solid]
    type = HeatStructureCylindrical
    position = '0 -0.0071501 0'
    orientation = '0 0 1'
    length = 3.66
    n_elems = 10
    names =  'FUEL GAP CLAD'
    widths = '6.057900E-03  1.524000E-04  9.398000E-04'
    n_part_elems = '5 1 2'
    solid_properties = 'fuel-mat gap-mat clad-mat'
    solid_properties_T_ref = '300 300 300'
    initial_T = 513
  []
  [core:hgen]
    type = HeatSourceFromTotalPower
    hs = core:solid
    regions = 'FUEL'
    power = reactor
    power_fraction = 1
  []
  [core:hx]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core:pipe
    hs   = core:solid
    hs_side = outer
    Hw = 1.0e4
    P_hf = 4.4925e-2
  []
  [inlet]
    type = InletDensityVelocity1Phase
    input = 'core:pipe:in'
    rho = 817.382210128610836
    vel = 2.4
  []
  [outlet]
    type = Outlet1Phase
    input = 'core:pipe:out'
    p = 7e6
  []
[]
[Postprocessors]
  [E_in]
    type = ADFlowBoundaryFlux1Phase
    boundary = inlet
    equation = energy
    execute_on = 'initial timestep_end'
  []
  [E_out]
    type = ADFlowBoundaryFlux1Phase
    boundary = outlet
    equation = energy
    execute_on = 'initial timestep_end'
  []
  [hf_pipe]
    type = ADHeatRateConvection1Phase
    block = core:pipe
    T_wall = T_wall
    T = T
    Hw = Hw
    P_hf = P_hf
    execute_on = 'initial timestep_end'
  []
  [E_diff]
    type = DifferencePostprocessor
    value1 = E_in
    value2 = E_out
    execute_on = 'initial timestep_end'
  []
  [E_conservation]
    type = SumPostprocessor
    values = 'E_diff hf_pipe'
  []
[]
[Preconditioning]
  [SMP_PJFNK]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  abort_on_solve_fail = true
  dt = 5
  solve_type = 'NEWTON'
  line_search = 'basic'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-8
  nl_max_its = 50
  l_tol = 1e-3
  l_max_its = 60
  start_time = 0
  end_time = 260
[]
[Outputs]
  [out]
    type = CSV
    execute_on = final
    show = 'E_conservation'
  []
  [console]
    type = Console
    show = 'E_conservation'
  []
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = simple_closures
  fp = he
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseTHM
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = '${A_core}'
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 2'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '0 0 1'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = ${T_in}
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_1:out cooling_pipe:in'
  []
  [cooling_pipe]
    type = FlowChannel1Phase
    position = '1 0 1.75'
    orientation = '0 0 -1'
    length = 1.5
    n_elems = 25
    A = ${A_pipe}
  []
  [cold_wall]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = cooling_pipe
    T_wall = 300
    P_hf = '${fparse pi * pipe_dia}'
  []
  [jct7]
    type = JunctionOneToOne1Phase
    connections = 'cooling_pipe:out down_pipe_2:in'
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 0'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 0
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct10]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
[]
[ControlLogic]
  [set_point]
    type = GetFunctionValueControl
    function = ${m_dot_in}
  []
  [pid]
    type = PIDControl
    initial_value = 0
    set_point = set_point:value
    input = m_dot_pump
    K_p = 1.
    K_i = 4.
    K_d = 0
  []
  [set_pump_head]
    type = SetComponentRealValueControl
    component = pump
    parameter = head
    value = pid:output
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [m_dot_pump]
    type = ADFlowJunctionFlux1Phase
    boundary = core_chan:in
    connection_index = 1
    equation = mass
    junction = jct7
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = cooling_pipe:out
    variable = T
  []
  [pump_head]
    type = RealComponentParameterValuePostprocessor
    component = pump
    parameter = head
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  dtmax = 5
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 0
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/02_core.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  closures = thm_closures
  fp = he
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [inlet]
    type = InletMassFlowRateTemperature1Phase
    input = 'core_chan:in'
    m_dot = ${m_dot_in}
    T = ${T_in}
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = '${A_core}'
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [outlet]
    type = Outlet1Phase
    input = 'core_chan:out'
    p = ${press}
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
  []
  end_time = 5000
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/03_upper_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = thm_closures
  fp = he
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [inlet]
    type = InletMassFlowRateTemperature1Phase
    input = 'up_pipe_1:in'
    m_dot = ${m_dot_in}
    T = ${T_in}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = '${A_core}'
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe:in'
  []
  [top_pipe]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 1
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_1:out cooling_pipe:in'
  []
  [cooling_pipe]
    type = FlowChannel1Phase
    position = '1 0 1.75'
    orientation = '0 0 -1'
    length = 1.5
    n_elems = 25
    A = ${A_pipe}
  []
  [cold_wall]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = cooling_pipe
    T_wall = 300
    P_hf = '${fparse pi * pipe_dia}'
  []
  [jct6]
    type = JunctionOneToOne1Phase
    connections = 'cooling_pipe:out down_pipe_2:in'
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [outlet]
    type = Outlet1Phase
    input = 'down_pipe_2:out'
    p = ${press}
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = cooling_pipe:out
    variable = T
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = thm_closures
  fp = he
[]
[Functions]
  [m_dot_sec_fn]
    type = PiecewiseLinear
    xy_data = '
      0    0
      10 ${m_dot_sec_in}'
  []
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
  [water]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = ${A_core}
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 2'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '0 1 0'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = ${T_in}
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionParallelChannels1Phase
    position = '1 0 1.75'
    connections = 'down_pipe_1:out hx/pri:in'
    volume = 1e-5
  []
  [hx]
    [pri]
      type = FlowChannel1Phase
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      roughness = 1e-5
      A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
      D_h = ${hx_dia_inner}
    []
    [ht_pri]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = inner
      flow_channel = hx/pri
      P_hf = '${fparse pi * hx_dia_inner}'
    []
    [wall]
      type = HeatStructureCylindrical
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      widths = '${hx_wall_thickness}'
      n_part_elems = '3'
      solid_properties = 'steel'
      solid_properties_T_ref = '300'
      names = '0'
      inner_radius = '${fparse hx_dia_inner / 2.}'
    []
    [ht_sec]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = outer
      flow_channel = hx/sec
      P_hf = '${fparse 2 * pi * hx_radius_wall}'
    []
    [sec]
      type = FlowChannel1Phase
      position = '${fparse 1 + hx_wall_thickness} 0 0.25'
      orientation = '0 0 1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
      D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
      fp = water
      initial_T = 300
    []
  []
  [jct7]
    type = JunctionParallelChannels1Phase
    position = '1 0 0.5'
    connections = 'hx/pri:out down_pipe_2:in'
    volume = 1e-5
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 0'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 0
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct9]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
  [inlet_sec]
    type = InletMassFlowRateTemperature1Phase
    input = 'hx/sec:in'
    m_dot = 0
    T = 300
  []
  [outlet_sec]
    type = Outlet1Phase
    input = 'hx/sec:out'
    p = 1e5
  []
[]
[ControlLogic]
  [set_point]
    type = GetFunctionValueControl
    function = ${m_dot_in}
  []
  [pid]
    type = PIDControl
    initial_value = 0.0
    set_point = set_point:value
    input = m_dot_pump
    K_p = 1.
    K_i = 4.
    K_d = 0
  []
  [set_pump_head]
    type = SetComponentRealValueControl
    component = pump
    parameter = head
    value = pid:output
  []
  [m_dot_sec_inlet_ctrl]
    type = GetFunctionValueControl
    function = m_dot_sec_fn
  []
  [set_m_dot_sec_ctrl]
    type = SetComponentRealValueControl
    component = inlet_sec
    parameter = m_dot
    value = m_dot_sec_inlet_ctrl:value
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [m_dot_pump]
    type = ADFlowJunctionFlux1Phase
    boundary = core_chan:in
    connection_index = 1
    equation = mass
    junction = jct7
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = hx/pri:out
    variable = T
  []
  [hx_sec_T_in]
    type = SideAverageValue
    boundary = inlet_sec
    variable = T
  []
  [hx_sec_T_out]
    type = SideAverageValue
    boundary = outlet_sec
    variable = T
  []
  [m_dot_sec]
    type = ADFlowBoundaryFlux1Phase
    boundary = inlet_sec
    equation = mass
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  dtmax = 5
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 0
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/heat_transfer_from_specified_temperature_1phase/phy.energy_walltemperature_ss_1phase.i)
# This test tests conservation of energy at steady state for 1-phase flow when
# wall temperature is specified. Conservation is checked by comparing the
# integral of the heat flux against the difference of the boundary fluxes.
[GlobalParams]
  initial_p = 7.0e6
  initial_vel = 0
  initial_T = 513
  gravity_vector = '0.0 0.0 0.0'
  closures = simple_closures
[]
[FluidProperties]
  [eos]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [pipe]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 3.66
    n_elems = 10
    A = 1.907720E-04
    D_h = 1.698566E-02
    f = 0.0
    fp = eos
  []
  [ht_pipe]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = pipe
    T_wall = 550
    Hw = 1.0e3
    P_hf = 4.4925e-2
  []
  [inlet]
    type = SolidWall1Phase
    input = 'pipe:in'
  []
  [outlet]
    type = SolidWall1Phase
    input = 'pipe:out'
  []
[]
[Postprocessors]
  [hf_pipe]
    type = ADHeatRateConvection1Phase
    block = pipe
    T_wall = T_wall
    T = T
    Hw = Hw
    P_hf = P_hf
    execute_on = 'initial timestep_end'
  []
  [heat_added]
    type = TimeIntegratedPostprocessor
    value = hf_pipe
    execute_on = 'initial timestep_end'
  []
  [E]
    type = ElementIntegralVariablePostprocessor
    variable = rhoEA
    execute_on = 'initial timestep_end'
  []
  [E_change]
    type = ChangeOverTimePostprocessor
    postprocessor = E
    change_with_respect_to_initial = true
    execute_on = 'initial timestep_end'
  []
  [E_conservation]
    type = DifferencePostprocessor
    value1 = heat_added
    value2 = E_change
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [SMP_PJFNK]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = crank-nicolson
  abort_on_solve_fail = true
  dt = 1e-1
  solve_type = 'NEWTON'
  line_search = 'basic'
  petsc_options_iname = '-pc_type'
  petsc_options_value = ' lu'
  nl_rel_tol = 1e-9
  nl_abs_tol = 1e-8
  nl_max_its = 50
  l_tol = 1e-3
  l_max_its = 60
  start_time = 0
  num_steps = 10
[]
[Outputs]
  [out]
    type = CSV
    show = 'E_conservation'
  []
  [console]
    type = Console
    show = 'E_conservation'
  []
[]
(modules/thermal_hydraulics/test/tests/problems/brayton_cycle/closed_brayton_cycle.i)
# This input file is used to demonstrate a simple closed, air Brayton cycle using
# a compressor, turbine, shaft, motor, and generator.
# The flow length is divided into 6 segments as illustrated below, where
#   - "(C)" denotes the compressor
#   - "(T)" denotes the turbine
#   - "*" denotes a fictitious junction
#
#                Heated section               Cooled section
# *-----(C)-----*--------------*-----(T)-----*--------------*
#    1       2         3          4       5         6
#
# Initially the fluid is at rest at ambient conditions, the shaft speed is zero,
# and no heat transfer occurs with the system.
# The transient is controlled as follows:
#   * 0   - 100 s: motor ramps up torque linearly from zero
#   * 100 - 200 s: motor ramps down torque linearly to zero, HTC ramps up linearly from zero.
#   * 200 - 300 s: (no changes; should approach steady condition)
I_motor = 1.0
motor_torque_max = 400.0
I_generator = 1.0
generator_torque_per_shaft_speed = -0.00025
motor_ramp_up_duration = 100.0
motor_ramp_down_duration = 100.0
post_motor_time = 100.0
t1 = ${motor_ramp_up_duration}
t2 = ${fparse t1 + motor_ramp_down_duration}
t3 = ${fparse t2 + post_motor_time}
D1 = 0.15
D2 = ${D1}
D3 = ${D1}
D4 = ${D1}
D5 = ${D1}
D6 = ${D1}
A1 = ${fparse 0.25 * pi * D1^2}
A2 = ${fparse 0.25 * pi * D2^2}
A3 = ${fparse 0.25 * pi * D3^2}
A4 = ${fparse 0.25 * pi * D4^2}
A5 = ${fparse 0.25 * pi * D5^2}
A6 = ${fparse 0.25 * pi * D6^2}
L1 = 10.0
L2 = ${L1}
L3 = ${L1}
L4 = ${L1}
L5 = ${L1}
L6 = ${L1}
x1 = 0.0
x2 = ${fparse x1 + L1}
x3 = ${fparse x2 + L2}
x4 = ${fparse x3 + L3}
x5 = ${fparse x4 + L4}
x6 = ${fparse x5 + L5}
x2_minus = ${fparse x2 - 0.001}
x2_plus = ${fparse x2 + 0.001}
x5_minus = ${fparse x5 - 0.001}
x5_plus = ${fparse x5 + 0.001}
n_elems1 = 10
n_elems2 = ${n_elems1}
n_elems3 = ${n_elems1}
n_elems4 = ${n_elems1}
n_elems5 = ${n_elems1}
n_elems6 = ${n_elems1}
A_ref_comp = ${fparse 0.5 * (A1 + A2)}
V_comp = ${fparse A_ref_comp * 1.0}
I_comp = 1.0
A_ref_turb = ${fparse 0.5 * (A4 + A5)}
V_turb = ${fparse A_ref_turb * 1.0}
I_turb = 1.0
c0_rated_comp = 351.6925137
rho0_rated_comp = 1.146881112
rated_mfr = 0.25
speed_rated_rpm = 96000
speed_rated = ${fparse speed_rated_rpm * 2 * pi / 60.0}
speed_initial = 0
eff_comp = 0.79
eff_turb = 0.843
T_hot = 1000
T_cold = 300
T_ambient = 300
p_ambient = 1e5
[GlobalParams]
  orientation = '1 0 0'
  gravity_vector = '0 0 0'
  initial_p = ${p_ambient}
  initial_T = ${T_ambient}
  initial_vel = 0
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  fp = fp_air
  closures = closures
  f = 0
  scaling_factor_1phase = '1 1 1e-5'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1
  scaling_factor_rhovV = 1
  scaling_factor_rhowV = 1
  scaling_factor_rhoEV = 1e-5
  rdg_slope_reconstruction = none
[]
[Functions]
  [motor_torque_fn]
    type = PiecewiseLinear
    x = '0 ${t1} ${t2}'
    y = '0 ${motor_torque_max} 0'
  []
  [motor_power_fn]
    type = ParsedFunction
    expression = 'torque * speed'
    symbol_names = 'torque speed'
    symbol_values = 'motor_torque shaft:omega'
  []
  [generator_torque_fn]
    type = ParsedFunction
    expression = 'slope * t'
    symbol_names = 'slope'
    symbol_values = '${generator_torque_per_shaft_speed}'
  []
  [generator_power_fn]
    type = ParsedFunction
    expression = 'torque * speed'
    symbol_names = 'torque speed'
    symbol_values = 'generator_torque shaft:omega'
  []
  [htc_wall_fn]
    type = PiecewiseLinear
    x = '0 ${t1} ${t2}'
    y = '0 0 1e3'
  []
[]
[FluidProperties]
  [fp_air]
    type = IdealGasFluidProperties
    emit_on_nan = none
  []
[]
[Closures]
  [closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [shaft]
    type = Shaft
    connected_components = 'motor compressor turbine generator'
    initial_speed = ${speed_initial}
    scaling_factor_omega = 1e-3
  []
  [motor]
    type = ShaftConnectedMotor
    inertia = ${I_motor}
    torque = 0 # controlled
  []
  [generator]
    type = ShaftConnectedMotor
    inertia = ${I_generator}
    torque = generator_torque_fn
  []
  [pipe1]
    type = FlowChannel1Phase
    position = '${x1} 0 0'
    length = ${L1}
    n_elems = ${n_elems1}
    A = ${A1}
  []
  [compressor]
    type = ShaftConnectedCompressor1Phase
    position = '${x2} 0 0'
    inlet = 'pipe1:out'
    outlet = 'pipe2:in'
    A_ref = ${A_ref_comp}
    volume = ${V_comp}
    omega_rated = ${speed_rated}
    mdot_rated = ${rated_mfr}
    c0_rated = ${c0_rated_comp}
    rho0_rated = ${rho0_rated_comp}
    speeds = '0.5208 0.6250 0.7292 0.8333 0.9375'
    Rp_functions = 'rp_comp1 rp_comp2 rp_comp3 rp_comp4 rp_comp5'
    eff_functions = 'eff_comp1 eff_comp2 eff_comp3 eff_comp4 eff_comp5'
    min_pressure_ratio = 1.0
    speed_cr_I = 0
    inertia_const = ${I_comp}
    inertia_coeff = '${I_comp} 0 0 0'
    # assume no shaft friction
    speed_cr_fr = 0
    tau_fr_const = 0
    tau_fr_coeff = '0 0 0 0'
  []
  [pipe2]
    type = FlowChannel1Phase
    position = '${x2} 0 0'
    length = ${L2}
    n_elems = ${n_elems2}
    A = ${A2}
  []
  [junction2_3]
    type = JunctionOneToOne1Phase
    connections = 'pipe2:out pipe3:in'
  []
  [pipe3]
    type = FlowChannel1Phase
    position = '${x3} 0 0'
    length = ${L3}
    n_elems = ${n_elems3}
    A = ${A3}
  []
  [junction3_4]
    type = JunctionOneToOne1Phase
    connections = 'pipe3:out pipe4:in'
  []
  [pipe4]
    type = FlowChannel1Phase
    position = '${x4} 0 0'
    length = ${L4}
    n_elems = ${n_elems4}
    A = ${A4}
  []
  [turbine]
    type = ShaftConnectedCompressor1Phase
    position = '${x5} 0 0'
    inlet = 'pipe4:out'
    outlet = 'pipe5:in'
    A_ref = ${A_ref_turb}
    volume = ${V_turb}
    treat_as_turbine = true
    omega_rated = ${speed_rated}
    mdot_rated = ${rated_mfr}
    c0_rated = ${c0_rated_comp}
    rho0_rated = ${rho0_rated_comp}
    speeds = '0 0.5208 0.6250 0.7292 0.8333 0.9375'
    Rp_functions = 'rp_turb0 rp_turb1 rp_turb2 rp_turb3 rp_turb4 rp_turb5'
    eff_functions = 'eff_turb1 eff_turb1 eff_turb2 eff_turb3 eff_turb4 eff_turb5'
    min_pressure_ratio = 1.0
    speed_cr_I = 0
    inertia_const = ${I_turb}
    inertia_coeff = '${I_turb} 0 0 0'
    # assume no shaft friction
    speed_cr_fr = 0
    tau_fr_const = 0
    tau_fr_coeff = '0 0 0 0'
  []
  [pipe5]
    type = FlowChannel1Phase
    position = '${x5} 0 0'
    length = ${L5}
    n_elems = ${n_elems5}
    A = ${A5}
  []
  [junction5_6]
    type = JunctionOneToOne1Phase
    connections = 'pipe5:out pipe6:in'
  []
  [pipe6]
    type = FlowChannel1Phase
    position = '${x6} 0 0'
    length = ${L6}
    n_elems = ${n_elems6}
    A = ${A6}
  []
  [junction6_1]
    type = JunctionOneToOne1Phase
    connections = 'pipe6:out pipe1:in'
  []
  [heating]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = pipe3
    T_wall = ${T_hot}
    Hw = htc_wall_fn
  []
  [cooling]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = pipe6
    T_wall = ${T_cold}
    Hw = htc_wall_fn
  []
[]
[ControlLogic]
  [motor_ctrl]
    type = TimeFunctionComponentControl
    component = motor
    parameter = torque
    function = motor_torque_fn
  []
[]
[Postprocessors]
  [heating_rate]
    type = ADHeatRateConvection1Phase
    block = 'pipe3'
    T = T
    T_wall = T_wall
    Hw = Hw
    P_hf = P_hf
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [cooling_rate]
    type = ADHeatRateConvection1Phase
    block = 'pipe6'
    T = T
    T_wall = T_wall
    Hw = Hw
    P_hf = P_hf
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [motor_torque]
    type = RealComponentParameterValuePostprocessor
    component = motor
    parameter = torque
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [motor_power]
    type = FunctionValuePostprocessor
    function = motor_power_fn
    execute_on = 'INITIAL TIMESTEP_END'
    indirect_dependencies = 'motor_torque shaft:omega'
  []
  [generator_torque]
    type = ShaftConnectedComponentPostprocessor
    quantity = torque
    shaft_connected_component_uo = generator:shaftconnected_uo
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [generator_power]
    type = FunctionValuePostprocessor
    function = generator_power_fn
    execute_on = 'INITIAL TIMESTEP_END'
    indirect_dependencies = 'generator_torque shaft:omega'
  []
  [shaft_speed]
    type = ScalarVariable
    variable = 'shaft:omega'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_in_comp]
    type = PointValue
    variable = p
    point = '${x2_minus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_out_comp]
    type = PointValue
    variable = p
    point = '${x2_plus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_ratio_comp]
    type = ParsedPostprocessor
    pp_names = 'p_in_comp p_out_comp'
    expression = 'p_out_comp / p_in_comp'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_in_turb]
    type = PointValue
    variable = p
    point = '${x5_minus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_out_turb]
    type = PointValue
    variable = p
    point = '${x5_plus} 0 0'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [p_ratio_turb]
    type = ParsedPostprocessor
    pp_names = 'p_in_turb p_out_turb'
    expression = 'p_in_turb / p_out_turb'
    execute_on = 'INITIAL TIMESTEP_END'
  []
  [mfr_comp]
    type = ADFlowJunctionFlux1Phase
    boundary = pipe1:out
    connection_index = 0
    equation = mass
    junction = compressor
  []
  [mfr_turb]
    type = ADFlowJunctionFlux1Phase
    boundary = pipe4:out
    connection_index = 0
    equation = mass
    junction = turbine
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'bdf2'
  end_time = ${t3}
  dt = 0.1
  solve_type = NEWTON
  nl_rel_tol = 1e-50
  nl_abs_tol = 1e-10
  nl_max_its = 15
  l_tol = 1e-4
  l_max_its = 10
[]
[Outputs]
  [csv]
    type = CSV
    file_base = 'closed_brayton_cycle'
    execute_vector_postprocessors_on = 'INITIAL'
  []
  [console]
    type = Console
    show = 'shaft_speed p_ratio_comp p_ratio_turb compressor:pressure_ratio turbine:pressure_ratio'
  []
[]
[Functions]
  # compressor pressure ratio
  [rp_comp1]
    type = PiecewiseLinear
    data_file = 'rp_comp1.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp2]
    type = PiecewiseLinear
    data_file = 'rp_comp2.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp3]
    type = PiecewiseLinear
    data_file = 'rp_comp3.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp4]
    type = PiecewiseLinear
    data_file = 'rp_comp4.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_comp5]
    type = PiecewiseLinear
    data_file = 'rp_comp5.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  # compressor efficiency
  [eff_comp1]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp2]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp3]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp4]
    type = ConstantFunction
    value = ${eff_comp}
  []
  [eff_comp5]
    type = ConstantFunction
    value = ${eff_comp}
  []
  # turbine pressure ratio
  [rp_turb0]
    type = ConstantFunction
    value = 1
  []
  [rp_turb1]
    type = PiecewiseLinear
    data_file = 'rp_turb1.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb2]
    type = PiecewiseLinear
    data_file = 'rp_turb2.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb3]
    type = PiecewiseLinear
    data_file = 'rp_turb3.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb4]
    type = PiecewiseLinear
    data_file = 'rp_turb4.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  [rp_turb5]
    type = PiecewiseLinear
    data_file = 'rp_turb5.csv'
    x_index_in_file = 0
    y_index_in_file = 1
    format = columns
    extrap = true
  []
  # turbine efficiency
  [eff_turb1]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb2]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb3]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb4]
    type = ConstantFunction
    value = ${eff_turb}
  []
  [eff_turb5]
    type = ConstantFunction
    value = ${eff_turb}
  []
[]
(modules/thermal_hydraulics/test/tests/postprocessors/heat_rate_convection_1phase/heat_rate_convection_1phase.i)
# Gold value should be the following:
#  htc * (T_wall - T) * P_hf * L
T_wall = 350
T = 300
htc = 50
P_hf = 0.3
L = 2.0
[GlobalParams]
  gravity_vector = '0 0 0'
  closures = simple_closures
[]
[FluidProperties]
  [fp]
    type = IdealGasFluidProperties
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [left_wall]
    type = SolidWall1Phase
    input = 'pipe:in'
  []
  [pipe]
    type = FlowChannel1Phase
    fp = fp
    position = '0 0 0'
    orientation = '1 0 0'
    length = ${L}
    n_elems = 10
    A = 1
    f = 0.
    initial_p = 1e6
    initial_T = ${T}
    initial_vel = 0
  []
  [right_wall]
    type = SolidWall1Phase
    input = 'pipe:out'
  []
  [heat_flux]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = pipe
    Hw = ${htc}
    T_wall = ${T_wall}
    P_hf = ${P_hf}
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = bdf2
  start_time = 0.0
  dt = 0.01
  num_steps = 0
  abort_on_solve_fail = true
  solve_type = 'PJFNK'
  line_search = 'basic'
  nl_rel_tol = 1e-6
  nl_abs_tol = 1e-6
  nl_max_its = 10
  l_tol = 1e-3
  l_max_its = 10
[]
[Postprocessors]
  [heat_rate]
    type = ADHeatRateConvection1Phase
    P_hf = P_hf
    execute_on = 'INITIAL'
  []
[]
[Outputs]
  csv = true
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = thm_closures
  fp = he
[]
[Functions]
  [m_dot_sec_fn]
    type = PiecewiseLinear
    xy_data = '
      0    0
      10 ${m_dot_sec_in}'
  []
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
  [water]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
[]
[Materials]
  [Re_mat]
    type = ADReynoldsNumberMaterial
    Re = Re
    rho = rho
    vel = vel
    D_h = D_h
    mu = mu
    block = hx/pri
  []
  [f_mat]
    type = ADParsedMaterial
    property_name = f_D
    constant_names = 'a b c'
    constant_expressions = '1 0.1 -0.5'
    material_property_names = 'Re'
    expression = 'a + b * Re^c'
    block = hx/pri
  []
  [Pr_mat]
    type = ADPrandtlNumberMaterial
    Pr = Pr
    cp = cp
    mu = mu
    k = k
    block = hx/pri
  []
  [Nu_mat]
    type = ADParsedMaterial
    property_name = 'Nu'
    constant_names = 'a b c'
    constant_expressions = '0.03 0.9 0.5'
    material_property_names = 'Re Pr'
    expression = 'a * Re ^b * Pr^c'
    block = hx/pri
  []
  [Hw_mat]
    type = ADConvectiveHeatTransferCoefficientMaterial
    D_h = D_h
    k = k
    Nu = Nu
    Hw = Hw
    block = hx/pri
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = ${A_core}
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 2'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '0 1 0'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = ${T_in}
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionParallelChannels1Phase
    position = '1 0 1.75'
    connections = 'down_pipe_1:out hx/pri:in'
    volume = 1e-5
  []
  [hx]
    [pri]
      type = FlowChannel1Phase
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      roughness = 1e-5
      A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
      D_h = ${hx_dia_inner}
      closures = ''
    []
    [ht_pri]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = inner
      flow_channel = hx/pri
      P_hf = '${fparse pi * hx_dia_inner}'
    []
    [wall]
      type = HeatStructureCylindrical
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      widths = '${hx_wall_thickness}'
      n_part_elems = '3'
      solid_properties = 'steel'
      solid_properties_T_ref = '300'
      names = '0'
      inner_radius = '${fparse hx_dia_inner / 2.}'
    []
    [ht_sec]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = outer
      flow_channel = hx/sec
      P_hf = '${fparse 2 * pi * hx_radius_wall}'
    []
    [sec]
      type = FlowChannel1Phase
      position = '${fparse 1 + hx_wall_thickness} 0 0.25'
      orientation = '0 0 1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
      D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
      fp = water
      initial_T = 300
    []
  []
  [jct7]
    type = JunctionParallelChannels1Phase
    position = '1 0 0.5'
    connections = 'hx/pri:out down_pipe_2:in'
    volume = 1e-5
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 0'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 0
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct9]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
  [inlet_sec]
    type = InletMassFlowRateTemperature1Phase
    input = 'hx/sec:in'
    m_dot = 0
    T = 300
  []
  [outlet_sec]
    type = Outlet1Phase
    input = 'hx/sec:out'
    p = 1e5
  []
[]
[ControlLogic]
  [set_point]
    type = GetFunctionValueControl
    function = ${m_dot_in}
  []
  [pid]
    type = PIDControl
    initial_value = 0.0
    set_point = set_point:value
    input = m_dot_pump
    K_p = 1.
    K_i = 4.
    K_d = 0
  []
  [set_pump_head]
    type = SetComponentRealValueControl
    component = pump
    parameter = head
    value = pid:output
  []
  [m_dot_sec_inlet_ctrl]
    type = GetFunctionValueControl
    function = m_dot_sec_fn
  []
  [set_m_dot_sec_ctrl]
    type = SetComponentRealValueControl
    component = inlet_sec
    parameter = m_dot
    value = m_dot_sec_inlet_ctrl:value
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [m_dot_pump]
    type = ADFlowJunctionFlux1Phase
    boundary = core_chan:in
    connection_index = 1
    equation = mass
    junction = jct7
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = hx/pri:out
    variable = T
  []
  [hx_sec_T_in]
    type = SideAverageValue
    boundary = inlet_sec
    variable = T
  []
  [hx_sec_T_out]
    type = SideAverageValue
    boundary = outlet_sec
    variable = T
  []
  [m_dot_sec]
    type = ADFlowBoundaryFlux1Phase
    boundary = inlet_sec
    equation = mass
  []
  [Hw_hx_pri]
    type = ADElementAverageMaterialProperty
    mat_prop = Hw
    block = hx/pri
  []
  [fD_hx_pri]
    type = ADElementAverageMaterialProperty
    mat_prop = f_D
    block = hx/pri
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  dtmax = 5
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]