- PorousFlowDictatorThe UserObject that holds the list of PorousFlow variable names
C++ Type:UserObjectName
Controllable:No
Description:The UserObject that holds the list of PorousFlow variable names
 - capillary_pressureName of the UserObject defining the capillary pressure
C++ Type:UserObjectName
Controllable:No
Description:Name of the UserObject defining the capillary pressure
 - phase0_porepressureVariable that is the porepressure of phase 0 (the liquid phase)
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Variable that is the porepressure of phase 0 (the liquid phase)
 - phase1_saturationVariable that is the saturation of phase 1 (the gas phase)
C++ Type:std::vector<VariableName>
Unit:(no unit assumed)
Controllable:No
Description:Variable that is the saturation of phase 1 (the gas phase)
 
PorousFlow2PhasePS
This Material calculates the 2 porepressures and the 2 saturations in a 2-phase situation, and derivatives of these with respect to the PorousFlowVariables.
Input Parameters
- at_nodesFalseEvaluate Material properties at nodes instead of quadpoints
Default:False
C++ Type:bool
Controllable:No
Description:Evaluate Material properties at nodes instead of quadpoints
 - blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
 - boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
 - computeTrueWhen false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
Default:True
C++ Type:bool
Controllable:No
Description:When false, MOOSE will not call compute methods on this material. The user must call computeProperties() after retrieving the MaterialBase via MaterialBasePropertyInterface::getMaterialBase(). Non-computed MaterialBases are not sorted for dependencies.
 - constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
Default:NONE
C++ Type:MooseEnum
Options:NONE, ELEMENT, SUBDOMAIN
Controllable:No
Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped
 - declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.
 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - implicitTrueDetermines whether this object is calculated using an implicit or explicit form
Default:True
C++ Type:bool
Controllable:No
Description:Determines whether this object is calculated using an implicit or explicit form
 - search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
Default:nearest_node_connected_sides
C++ Type:MooseEnum
Options:nearest_node_connected_sides, all_proximate_sides
Controllable:No
Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
 - seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
 - use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
 
Advanced Parameters
- output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)
C++ Type:std::vector<std::string>
Controllable:No
Description:List of material properties, from this material, to output (outputs must also be defined to an output type)
 - outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object
Default:none
C++ Type:std::vector<OutputName>
Controllable:No
Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object
 
Outputs Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
 - use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
 
Material Property Retrieval Parameters
Input Files
- (modules/porous_flow/test/tests/capillary_pressure/vangenuchten1.i)
 - (modules/porous_flow/test/tests/relperm/vangenuchten2.i)
 - (modules/porous_flow/test/tests/relperm/vangenuchten1.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG.i)
 - (modules/porous_flow/examples/thm_example/2D_c.i)
 - (modules/porous_flow/test/tests/capillary_pressure/vangenuchten3.i)
 - (modules/porous_flow/test/tests/relperm/unity.i)
 - (modules/porous_flow/test/tests/heat_conduction/two_phase.i)
 - (modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
 - (modules/porous_flow/test/tests/chemistry/dissolution_limited_2phase.i)
 - (modules/porous_flow/test/tests/gravity/grav02g.i)
 - (modules/porous_flow/test/tests/hysteresis/2phasePS_relperm_2.i)
 - (modules/porous_flow/test/tests/relperm/corey2.i)
 - (modules/porous_flow/test/tests/jacobian/eff_stress04.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass06.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG2.i)
 - (modules/porous_flow/test/tests/relperm/brooks_corey1.i)
 - (modules/porous_flow/test/tests/heat_conduction/two_phase_fv.i)
 - (modules/porous_flow/test/tests/jacobian/diff02.i)
 - (modules/porous_flow/test/tests/jacobian/eff_stress02.i)
 - (modules/porous_flow/test/tests/gravity/grav02f.i)
 - (modules/porous_flow/test/tests/jacobian/diff03.i)
 - (modules/porous_flow/test/tests/gravity/grav02e_fv.i)
 - (modules/porous_flow/test/tests/chemistry/precipitation_2phase.i)
 - (modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass07.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
 - (modules/porous_flow/examples/thm_example/2D.i)
 - (modules/porous_flow/test/tests/aux_kernels/properties.i)
 - (modules/porous_flow/examples/restart/gas_injection.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass10.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass05.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_fv.i)
 - (modules/porous_flow/test/tests/relperm/corey3.i)
 - (modules/porous_flow/test/tests/hysteresis/relperm_jac.i)
 - (modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_KT.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass08.i)
 - (modules/porous_flow/test/tests/relperm/corey4.i)
 - (modules/porous_flow/test/tests/actions/addmaterials.i)
 - (modules/porous_flow/test/tests/actions/addmaterials2.i)
 - (modules/porous_flow/test/tests/gravity/grav02e.i)
 - (modules/porous_flow/test/tests/mass_conservation/mass09.i)
 - (modules/porous_flow/test/tests/jacobian/fflux07.i)
 - (modules/porous_flow/test/tests/relperm/corey1.i)
 - (modules/porous_flow/test/tests/relperm/brooks_corey2.i)
 - (modules/porous_flow/test/tests/capillary_pressure/brooks_corey2.i)
 - (modules/porous_flow/test/tests/jacobian/mass09.i)
 - (modules/porous_flow/test/tests/hysteresis/relperm_jac_1.i)
 - (modules/porous_flow/test/tests/capillary_pressure/brooks_corey1.i)
 - (modules/porous_flow/test/tests/capillary_pressure/vangenuchten2.i)
 - (modules/porous_flow/test/tests/hysteresis/2phasePS_relperm.i)
 - (modules/porous_flow/test/tests/dirackernels/theis3.i)
 
(modules/porous_flow/test/tests/capillary_pressure/vangenuchten1.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 500
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [p0]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 0
    variable = p0aux
  []
  [p1]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = p1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.1
    log_extension = false
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    variable = 's0aux s1aux p0aux p1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 500
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-6
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/relperm/vangenuchten2.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.4 for both phases
# Phase 0 residual saturation s0r = 0.1
# Phase 1 residual saturation s1r = 0.2
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.4
    s_res = 0.1
    sum_s_res = 0.3
  []
  [kr1]
    type = PorousFlowRelativePermeabilityVG
    phase = 1
    m = 0.4
    s_res = 0.2
    sum_s_res = 0.3
    wetting = false
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-7
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/relperm/vangenuchten1.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityVG
    phase = 1
    m = 0.5
    wetting = false
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-7
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-4
    sat_lr = 0.3
    pc_max = 1e6
    log_extension = false
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePSVG
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/examples/thm_example/2D_c.i)
# Two phase, temperature-dependent, with mechanics and chemistry, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2000
  bias_x = 1.003
  xmin = 0.1
  xmax = 5000
  ny = 1
  ymin = 0
  ymax = 11
  coord_type = RZ
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  biot_coefficient = 1.0
[]
[Variables]
  [pwater]
    initial_condition = 18.3e6
  []
  [sgas]
    initial_condition = 0.0
  []
  [temp]
    initial_condition = 358
  []
  [disp_r]
  []
[]
[AuxVariables]
  [rate]
  []
  [disp_z]
  []
  [massfrac_ph0_sp0]
    initial_condition = 1 # all H20 in phase=0
  []
  [massfrac_ph1_sp0]
    initial_condition = 0 # no H2O in phase=1
  []
  [pgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [stress_rr]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_tt]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
  [mineral_conc_m3_per_m3]
    family = MONOMIAL
    order = CONSTANT
    initial_condition = 0.1
  []
  [eqm_const]
    initial_condition = 0.0
  []
  [porosity]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = temp
  []
  [conduction]
    type = PorousFlowExponentialDecay
    use_displaced_mesh = false
    variable = temp
    reference = 358
    rate = rate
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = temp
    eigenstrain_names = thermal_contribution
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxKernels]
  [rate]
    type = FunctionAux
    variable = rate
    execute_on = timestep_begin
    function = decay_rate
  []
  [pgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [stress_rr]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_rr
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral_conc_m3_per_m3
  []
  [eqm_const_auxk]
    type = ParsedAux
    variable = eqm_const
    coupled_variables = temp
    expression = '(358 - temp) / (358 - 294)'
  []
  [porosity_auxk]
    type = PorousFlowPropertyAux
    property = porosity
    variable = porosity
  []
[]
[Functions]
  [decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
    type = ParsedFunction
    expression = 'sqrt(10056886.914/t)/11.0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pwater sgas disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 970.0
    viscosity = 0.3394e-3
    cv = 4149.0
    cp = 4149.0
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
  [co2]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 516.48
    viscosity = 0.0393e-3
    cv = 2920.5
    cp = 2920.5
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
  []
  [gas]
    type = PorousFlowSingleComponentFluid
    fp = co2
    phase = 1
  []
  [porosity_reservoir]
    type = PorousFlowPorosity
    porosity_zero = 0.2
    chemical = true
    reference_chemistry = 0.1
    initial_mineral_concentrations = 0.1
  []
  [permeability_reservoir]
    type = PorousFlowPermeabilityConst
    permeability = '2e-12 0 0  0 0 0  0 0 0'
  []
  [relperm_liquid]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    phase = 0
    s_res = 0.200
    sum_s_res = 0.405
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    s_res = 0.205
    sum_s_res = 0.405
    nw_phase = true
    lambda = 2
  []
  [thermal_conductivity_reservoir]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0 0 0  0 1.320 0  0 0 0'
    wet_thermal_conductivity = '0 0 0  0 3.083 0  0 0 0'
  []
  [internal_energy_reservoir]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2350.0
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    shear_modulus = 6.0E9
    poissons_ratio = 0.2
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution ini_stress'
  []
  [ini_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '-12.8E6 0 0  0 -51.3E6 0  0 0 -12.8E6'
    eigenstrain_name = ini_stress
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = temp
    stress_free_temperature = 358
    thermal_expansion_coeff = 5E-6
    eigenstrain_name = thermal_contribution
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    num_reactions = 1
    primary_concentrations = 1.0 # fixed activity
    equilibrium_constants_as_log10 = true
    equilibrium_constants = eqm_const
    primary_activity_coefficients = 1.0 # fixed activity
    reactions = 1
    kinetic_rate_constant = 1E-6
    molar_volume = 1.0
    specific_reactive_surface_area = 1.0
    activation_energy = 0.0 # no Arrhenius
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = 0.1
  []
  [predis_nodes]
    type = PorousFlowAqueousPreDisChemistry
    at_nodes = true
    num_reactions = 1
    primary_concentrations = 1.0 # fixed activity
    equilibrium_constants_as_log10 = true
    equilibrium_constants = eqm_const
    primary_activity_coefficients = 1.0 # fixed activity
    reactions = 1
    kinetic_rate_constant = 1E-6
    molar_volume = 1.0
    specific_reactive_surface_area = 1.0
    activation_energy = 0.0 # no Arrhenius
  []
  [mineral_conc_nodes]
    type = PorousFlowAqueousPreDisMineral
    at_nodes = true
    initial_concentrations = 0.1
  []
[]
[BCs]
  [outer_pressure_fixed]
    type = DirichletBC
    boundary = right
    value = 18.3e6
    variable = pwater
  []
  [outer_saturation_fixed]
    type = DirichletBC
    boundary = right
    value = 0.0
    variable = sgas
  []
  [outer_temp_fixed]
    type = DirichletBC
    boundary = right
    value = 358
    variable = temp
  []
  [fixed_outer_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = right
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = sgas
    use_mobility = false
    use_relperm = false
    fluid_phase = 1
    flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
  []
  [cold_co2]
    type = DirichletBC
    boundary = left
    variable = temp
    value = 294
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = left
    variable = disp_r
    component = 0
    postprocessor = p_bh # note, this lags
    use_displaced_mesh = false
  []
[]
[Postprocessors]
  [p_bh]
    type = PointValue
    variable = pwater
    point = '0.1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
  [mineral_bh] # mineral concentration (m^3(mineral)/m^3(rock)) at the borehole
    type = PointValue
    variable = mineral_conc_m3_per_m3
    point = '0.1 0 0'
    use_displaced_mesh = false
  []
[]
[VectorPostprocessors]
  [ptsuss]
    type = LineValueSampler
    use_displaced_mesh = false
    start_point = '0.1 0 0'
    end_point = '5000 0 0'
    sort_by = x
    num_points = 50000
    outputs = csv
    variable = 'pwater temp sgas disp_r stress_rr stress_tt mineral_conc_m3_per_m3 porosity'
  []
[]
[Preconditioning]
  active = 'smp'
  [smp]
    type = SMP
    full = true
    #petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E2       1E-5        50'
  []
  [mumps]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
    petsc_options_value = 'gmres      lu       mumps                         NONZERO               1E-5       1E2       50'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1.5768e8
  #dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.1
  []
[]
[Outputs]
  print_linear_residuals = false
  sync_times = '3600 86400 2.592E6 1.5768E8'
  perf_graph = true
  exodus = true
  [csv]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/capillary_pressure/vangenuchten3.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 500
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [p0]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 0
    variable = p0aux
  []
  [p1]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = p1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.1
    s_scale = 0.8
    log_extension = false
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    variable = 's0aux s1aux p0aux p1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 500
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-6
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/relperm/unity.i)
# Test perfectly mobile relative permeability curve by varying saturation over the mesh
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [kr1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase.i)
# 2phase heat conduction, with saturation fixed at 0.5
# apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [phase0_porepressure]
    initial_condition = 0
  []
  [phase1_saturation]
    initial_condition = 0.5
  []
  [temp]
    initial_condition = 200
  []
[]
[Kernels]
  [dummy_p0]
    type = TimeDerivative
    variable = phase0_porepressure
  []
  [dummy_s1]
    type = TimeDerivative
    variable = phase1_saturation
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_conduction]
    type = PorousFlowHeatConduction
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 0.4
    thermal_expansion = 0
    cv = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [thermal_conductivity]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0.3 0 0  0 0 0  0 0 0'
    wet_thermal_conductivity = '1.7 0 0  0 0 0  0 0 0'
    exponent = 1.0
    aqueous_phase_number = 1
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = phase0_porepressure
    phase1_saturation = phase1_saturation
    capillary_pressure = pc
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.8
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 0.25
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
[]
[BCs]
  [left]
    type = DirichletBC
    boundary = left
    value = 300
    variable = temp
  []
[]
[Preconditioning]
  [andy]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E1
  end_time = 1E2
[]
[Postprocessors]
  [t000]
    type = PointValue
    variable = temp
    point = '0 0 0'
    execute_on = 'initial timestep_end'
  []
  [t010]
    type = PointValue
    variable = temp
    point = '10 0 0'
    execute_on = 'initial timestep_end'
  []
  [t020]
    type = PointValue
    variable = temp
    point = '20 0 0'
    execute_on = 'initial timestep_end'
  []
  [t030]
    type = PointValue
    variable = temp
    point = '30 0 0'
    execute_on = 'initial timestep_end'
  []
  [t040]
    type = PointValue
    variable = temp
    point = '40 0 0'
    execute_on = 'initial timestep_end'
  []
  [t050]
    type = PointValue
    variable = temp
    point = '50 0 0'
    execute_on = 'initial timestep_end'
  []
  [t060]
    type = PointValue
    variable = temp
    point = '60 0 0'
    execute_on = 'initial timestep_end'
  []
  [t070]
    type = PointValue
    variable = temp
    point = '70 0 0'
    execute_on = 'initial timestep_end'
  []
  [t080]
    type = PointValue
    variable = temp
    point = '80 0 0'
    execute_on = 'initial timestep_end'
  []
  [t090]
    type = PointValue
    variable = temp
    point = '90 0 0'
    execute_on = 'initial timestep_end'
  []
  [t100]
    type = PointValue
    variable = temp
    point = '100 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = two_phase
  [csv]
    type = CSV
  []
  exodus = false
[]
(modules/porous_flow/test/tests/chemistry/2species_equilibrium_2phase.i)
# Using a two-phase system (see 2species_equilibrium for the single-phase)
# The saturations, porosity, mass fractions, tortuosity and diffusion coefficients are chosen so that the results are identical to 2species_equilibrium
#
# PorousFlow analogy of chemical_reactions/test/tests/aqueous_equilibrium/2species.i
#
# Simple equilibrium reaction example to illustrate the use of PorousFlowMassFractionAqueousEquilibriumChemistry
#
# In this example, two primary species a and b are transported by diffusion and convection
# from the left of the porous medium, reacting to form two equilibrium species pa2 and pab
# according to the equilibrium reaction:
#
#      reactions = '2a = pa2     rate = 10^2
#                   a + b = pab  rate = 10^-2'
#
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 10
[]
[Variables]
  [a]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = BoundingBoxIC
      x1 = 0.0
      y1 = 0.0
      x2 = 1.0e-10
      y2 = 1
      inside = 1.0e-2
      outside = 1.0e-10
    []
  []
  [b]
    order = FIRST
    family = LAGRANGE
    [InitialCondition]
      type = BoundingBoxIC
      x1 = 0.0
      y1 = 0.0
      x2 = 1.0e-10
      y2 = 1
      inside = 1.0e-2
      outside = 1.0e-10
    []
  []
[]
[AuxVariables]
  [eqm_k0]
    initial_condition = 1E2
  []
  [eqm_k1]
    initial_condition = 1E-2
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [a_in_phase0]
    initial_condition = 0.0
  []
  [b_in_phase0]
    initial_condition = 0.0
  []
  [pa2]
    family = MONOMIAL
    order = CONSTANT
  []
  [pab]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [pa2]
    type = PorousFlowPropertyAux
    property = secondary_concentration
    secondary_species = 0
    variable = pa2
  []
  [pab]
    type = PorousFlowPropertyAux
    property = secondary_concentration
    secondary_species = 1
    variable = pab
  []
[]
[ICs]
  [pressure0]
    type = FunctionIC
    variable = pressure0
    function = 2-x
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [flux_a]
    type = PorousFlowAdvectiveFlux
    variable = a
    fluid_component = 0
  []
  [diff_a]
    type = PorousFlowDispersiveFlux
    variable = a
    fluid_component = 0
    disp_trans = '0 0'
    disp_long = '0 0'
  []
  [mass_b]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = b
  []
  [flux_b]
    type = PorousFlowAdvectiveFlux
    variable = b
    fluid_component = 1
  []
  [diff_b]
    type = PorousFlowDispersiveFlux
    variable = b
    fluid_component = 1
    disp_trans = '0 0'
    disp_long = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'a b'
    number_fluid_phases = 2
    number_fluid_components = 3
    number_aqueous_equilibrium = 2
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [massfrac]
    type = PorousFlowMassFractionAqueousEquilibriumChemistry
    mass_fraction_vars = 'a_in_phase0 b_in_phase0 a b'
    num_reactions = 2
    equilibrium_constants = 'eqm_k0 eqm_k1'
    primary_activity_coefficients = '1 1'
    secondary_activity_coefficients = '1 1'
    reactions = '2 0
                 1 1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.8
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    # porous_flow permeability / porous_flow viscosity = chemical_reactions conductivity = 1E-4
    permeability = '1E-7 0 0 0 1E-7 0 0 0 1E-7'
  []
  [relp0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relp1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
  [diff]
    type = PorousFlowDiffusivityConst
    # porous_flow diffusion_coeff * tortuousity * porosity = chemical_reactions diffusivity = 1E-4
    diffusion_coeff = '5E-4 5E-4 5E-4
                       5E-4 5E-4 5E-4'
    tortuosity = '0.25 0.25'
  []
[]
[BCs]
  [a_left]
    type = DirichletBC
    variable = a
    boundary = left
    value = 1.0e-2
  []
  [b_left]
    type = DirichletBC
    variable = b
    boundary = left
    value = 1.0e-2
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 10
  end_time = 100
[]
[Outputs]
  print_linear_residuals = true
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/chemistry/dissolution_limited_2phase.i)
# Using a two-phase system (see dissolution_limited.i for the single-phase)
# The saturation and porosity are chosen so that the results are identical to dissolution_limited.i
#
# The dissolution reaction, with limited initial mineral concentration
#
# a <==> mineral
#
# produces "mineral".  Using mineral_density = fluid_density, theta = 1 = eta, the DE is
#
# a' = -(mineral / (porosity * saturation))' = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#
# The following parameters are used
#
# T_ref = 0.5 K
# T = 1 K
# activation_energy = 3 J/mol
# gas_constant = 6 J/(mol K)
# kinetic_rate_at_ref_T = 0.60653 mol/(m^2 s)
# These give rate = 0.60653 * exp(1/2) = 1 mol/(m^2 s)
#
# surf_area = 0.5 m^2/L
# molar_volume = 2 L/mol
# These give rate * surf_area * molar_vol = 1 s^-1
#
# equilibrium_constant = 0.5 (dimensionless)
# primary_activity_coefficient = 2 (dimensionless)
# stoichiometry = 1 (dimensionless)
# This means that 1 - (1 / eqm_const) * (act_coeff * a)^stoi = 1 - 4 a, which is positive for a < 0.25, ie dissolution for a(t=0) < 0.25
#
# The solution of the DE is
# a = eqm_const / act_coeff + (a(t=0) - eqm_const / act_coeff) exp(-rate * surf_area * molar_vol * act_coeff * t / eqm_const)
#   = 0.25 + (a(t=0) - 0.25) exp(-4 * t)
# c = c(t=0) - (a - a(t=0)) * porosity * saturation
#
# However, c(t=0) is small, so that the reaction only works until c=0, then a and c both remain fixed
#
# This test checks that (a + c / (porosity * saturation)) is time-independent, and that a follows the above solution, until c=0 and thereafter remains fixed.
#
# Aside:
#    The exponential curve is not followed exactly because moose actually solves
#    (a - a_old)/dt = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#    which does not give an exponential exactly, except in the limit dt->0
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[Variables]
  [a]
    initial_condition = 0.05
  []
[]
[AuxVariables]
  [eqm_k]
    initial_condition = 0.5
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [b]
    initial_condition = 0.123
  []
  [ini_mineral_conc]
    initial_condition = 0.015
  []
  [mineral]
    family = MONOMIAL
    order = CONSTANT
  []
  [should_be_static]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral
  []
  [should_be_static]
    type = ParsedAux
    coupled_variables = 'mineral a'
    expression = 'a + mineral / 0.1'
    variable = should_be_static
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [pre_dis]
    type = PorousFlowPreDis
    variable = a
    mineral_density = 1000
    stoichiometry = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = a
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 1
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [mass_frac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'b a'
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    primary_concentrations = a
    num_reactions = 1
    equilibrium_constants = eqm_k
    primary_activity_coefficients = 2
    reactions = 1
    specific_reactive_surface_area = 0.5
    kinetic_rate_constant = 0.6065306597126334
    activation_energy = 3
    molar_volume = 2
    gas_constant = 6
    reference_temperature = 0.5
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = ini_mineral_conc
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.4
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1E-10
  dt = 0.01
  end_time = 1
[]
[Postprocessors]
  [a]
    type = PointValue
    point = '0 0 0'
    variable = a
  []
  [should_be_static]
    type = PointValue
    point = '0 0 0'
    variable = should_be_static
  []
[]
[Outputs]
  time_step_interval = 10
  csv = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/gravity/grav02g.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, Brooks-Corey capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Brooks-Corey relative permeabilities with residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = CONSTANT
  []
  [swater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermwater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = MaterialStdVectorAux
    property = PorousFlow_relative_permeability_qp
    index = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureBC
    lambda = 2
    pe = 1e4
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityBC
    lambda = 2
    phase = 0
    s_res = 0.25
    sum_s_res = 0.35
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    lambda = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.35
    nw_phase = true
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_stol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-13 15'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 5e3
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02g
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/test/tests/hysteresis/2phasePS_relperm_2.i)
# Simple example of a 2-phase situation with hysteretic relative permeability.  Gas is added to and removed from the system in order to observe the hysteresis
# All liquid water exists in component 0
# All gas exists in component 1
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 10.0
    m = 0.33
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
[]
[DiracKernels]
  [pump]
    type = PorousFlowPointSourceFromPostprocessor
    mass_flux = flux
    point = '0.5 0 0'
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [sat0]
    family = MONOMIAL
    order = CONSTANT
  []
  [pp1]
    family = MONOMIAL
    order = CONSTANT
  []
  [hys_order]
    family = MONOMIAL
    order = CONSTANT
  []
  [relperm_liquid]
    family = MONOMIAL
    order = CONSTANT
  []
  [relperm_gas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sat0]
    type = PorousFlowPropertyAux
    variable = sat0
    phase = 0
    property = saturation
  []
  [relperm_liquid]
    type = PorousFlowPropertyAux
    variable = relperm_liquid
    property = relperm
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowPropertyAux
    variable = relperm_gas
    property = relperm
    phase = 1
  []
  [pp1]
    type = PorousFlowPropertyAux
    variable = pp1
    phase = 1
    property = pressure
  []
  [hys_order]
    type = PorousFlowPropertyAux
    variable = hys_order
    property = hysteresis_order
  []
[]
[FluidProperties]
  [simple_fluid] # same properties used for both phases
    type = SimpleFluidProperties
    bulk_modulus = 10 # so pumping does not result in excessive porepressure
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [pc_calculator]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [relperm_liquid]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.4
    S_gr_max = 0.2
    m = 0.9
    liquid_modification_range = 0.9
  []
  [relperm_gas]
    type = PorousFlowHystereticRelativePermeabilityGas
    phase = 1
    S_lr = 0.4
    S_gr_max = 0.2
    m = 0.9
    gamma = 0.33
    k_rg_max = 1.0
    gas_low_extension_type = linear_like
  []
[]
[Postprocessors]
  [flux]
    type = FunctionValuePostprocessor
    function = 'if(t <= 15, 20, -20)'
  []
  [hys_order]
    type = PointValue
    point = '0 0 0'
    variable = hys_order
  []
  [sat0]
    type = PointValue
    point = '0 0 0'
    variable = sat0
  []
  [sat1]
    type = PointValue
    point = '0 0 0'
    variable = sat1
  []
  [kr_liq]
    type = PointValue
    point = '0 0 0'
    variable = relperm_liquid
  []
  [kr_gas]
    type = PointValue
    point = '0 0 0'
    variable = relperm_gas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = ' lu       NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 5
  end_time = 29
  nl_abs_tol = 1E-10
[]
[Outputs]
  [csv]
    type = CSV
    sync_times = '0 1 2 3 8 12 13 14 15 16 17 18 20 24 25 26 27 28 29'
    sync_only = true
    file_base = '2phasePS_relperm_2_none'
  []
[]
(modules/porous_flow/test/tests/relperm/corey2.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Corey exponent n = 2 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
    family = LAGRANGE
    order = FIRST
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/jacobian/eff_stress04.i)
# 2phase (PS)
# vanGenuchten, constant-bulk density for each phase, constant porosity, 2components (that exist in both phases)
# unsaturated
# RZ coordinate system
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 1
  ny = 1
  coord_type = RZ
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [sgas]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
  []
  [massfrac_ph1_sp0]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = 0
    max = 1
  []
  [sgas]
    type = RandomIC
    variable = sgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 1
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 1
  []
[]
[Kernels]
  [grad0]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 0
    variable = ppwater
  []
  [grad1]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 1
    variable = sgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 10
    sat_lr = 0.01
  []
[]
[Materials]
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [p_eff]
    type = PorousFlowEffectiveFluidPressure
  []
[]
[Preconditioning]
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-snes_type'
    petsc_options_value = 'test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/mass_conservation/mass06.i)
# Checking that the mass postprocessor correctly calculates the mass
# of each component in each phase, as well as the total mass of each
# component in all phases. Also tests that optional saturation threshold
# gives the correct mass
# 2phase, 2component, constant porosity
# saturation_threshold set to 0.6 for phase 1
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp0_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 0
  []
  [comp0_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 1
  []
  [comp0_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
  []
  [comp1_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 0
  []
  [comp1_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 1
  []
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [comp1_phase1_threshold_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 1
    saturation_threshold = 0.6
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1e-16
  dt = 1
  end_time = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = mass06
  csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePSVG2.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-4
    sat_lr = 0.3
    pc_max = 1e9
    log_extension = true
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePSVG2
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/relperm/brooks_corey1.i)
# Test Brooks-Corey relative permeability curve by varying saturation over the mesh
# Exponent lambda = 2 for both phases
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
  []
  [kr1]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    lambda = 2
    nw_phase = true
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/heat_conduction/two_phase_fv.i)
# 2 phase heat conduction, with saturation fixed at 0.5
# Apply a boundary condition of T=300 to a bar that
# is initially at T=200, and observe the expected
# error-function response
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [phase0_porepressure]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [phase1_saturation]
    type = MooseVariableFVReal
    initial_condition = 0.5
  []
  [temp]
    type = MooseVariableFVReal
    initial_condition = 200
  []
[]
[FVKernels]
  [dummy_p0]
    type = FVTimeKernel
    variable = phase0_porepressure
  []
  [dummy_s1]
    type = FVTimeKernel
    variable = phase1_saturation
  []
  [energy_dot]
    type = FVPorousFlowEnergyTimeDerivative
    variable = temp
  []
  [heat_conduction]
    type = FVPorousFlowHeatConduction
    variable = temp
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp phase0_porepressure phase1_saturation'
    number_fluid_phases = 2
    number_fluid_components = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 0.4
    thermal_expansion = 0
    cv = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.3
    thermal_expansion = 0
    cv = 2
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
    temperature = temp
  []
  [thermal_conductivity]
    type = ADPorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0.3 0 0  0 0 0  0 0 0'
    wet_thermal_conductivity = '1.7 0 0  0 0 0  0 0 0'
    exponent = 1.0
    aqueous_phase_number = 1
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = phase0_porepressure
    phase1_saturation = phase1_saturation
    capillary_pressure = pc
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.8
  []
  [rock_heat]
    type = ADPorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 0.25
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
[]
[FVBCs]
  [left]
    type = FVDirichletBC
    boundary = left
    value = 300
    variable = temp
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1E1
  end_time = 1E2
[]
[Postprocessors]
  [t005]
    type = PointValue
    variable = temp
    point = '5 0 0'
    execute_on = 'initial timestep_end'
  []
  [t015]
    type = PointValue
    variable = temp
    point = '15 0 0'
    execute_on = 'initial timestep_end'
  []
  [t025]
    type = PointValue
    variable = temp
    point = '25 0 0'
    execute_on = 'initial timestep_end'
  []
  [t035]
    type = PointValue
    variable = temp
    point = '35 0 0'
    execute_on = 'initial timestep_end'
  []
  [t045]
    type = PointValue
    variable = temp
    point = '45 0 0'
    execute_on = 'initial timestep_end'
  []
  [t055]
    type = PointValue
    variable = temp
    point = '55 0 0'
    execute_on = 'initial timestep_end'
  []
  [t065]
    type = PointValue
    variable = temp
    point = '65 0 0'
    execute_on = 'initial timestep_end'
  []
  [t075]
    type = PointValue
    variable = temp
    point = '75 0 0'
    execute_on = 'initial timestep_end'
  []
  [t085]
    type = PointValue
    variable = temp
    point = '85 0 0'
    execute_on = 'initial timestep_end'
  []
  [t095]
    type = PointValue
    variable = temp
    point = '95 0 0'
    execute_on = 'initial timestep_end'
  []
[]
[Outputs]
  file_base = two_phase_fv
  csv = true
[]
(modules/porous_flow/test/tests/jacobian/diff02.i)
# Test the Jacobian of the diffusive component of the PorousFlowDisperiveFlux kernel for two phases.
# By setting disp_long and disp_trans to zero, the purely diffusive component of the flux
# can be isolated. Uses constant tortuosity and diffusion coefficients
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [sgas]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [massfrac1]
  []
[]
[ICs]
  [sgas]
    type = RandomIC
    variable = sgas
    max = 1
    min = 0
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 1
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 1
  []
[]
[Kernels]
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = sgas
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'sgas massfrac0'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 10
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 0.1
  []
[]
[Materials]
  [temp]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = 1
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [diff]
    type = PorousFlowDiffusivityConst
     diffusion_coeff = '1e-2 1e-1 1e-2 1e-1'
     tortuosity = '0.1 0.2'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[Preconditioning]
  active = smp
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/jacobian/eff_stress02.i)
# 2phase (PS)
# vanGenuchten, constant-bulk density for each phase, constant porosity, 2components (that exist in both phases)
# unsaturated
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 1
  ny = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [sgas]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
  []
  [massfrac_ph1_sp0]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = 0
    max = 1
  []
  [sgas]
    type = RandomIC
    variable = sgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 1
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 1
  []
[]
[Kernels]
  [grad0]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 0
    variable = ppwater
  []
  [grad1]
    type = PorousFlowEffectiveStressCoupling
    biot_coefficient = 0.3
    component = 1
    variable = sgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 10
    sat_lr = 0.01
  []
[]
[Materials]
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [p_eff]
    type = PorousFlowEffectiveFluidPressure
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options = '-snes_test_display'
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it -snes_type'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000 test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/gravity/grav02f.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, van Genuchten capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = CONSTANT
  []
  [swater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermwater]
    family = MONOMIAL
    order = CONSTANT
  []
  [relpermgas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = MaterialStdVectorAux
    property = PorousFlow_relative_permeability_qp
    index = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-4
    pc_max = 2e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.25
    sum_s_res = 0.35
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.35
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_stol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-13 15'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e4
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02f
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/test/tests/jacobian/diff03.i)
# Test the Jacobian of the diffusive component of the PorousFlowDisperiveFlux kernel for two phases.
# By setting disp_long and disp_trans to zero, the purely diffusive component of the flux
# can be isolated. Uses saturation-dependent tortuosity and diffusion coefficients from the
# Millington-Quirk model
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 3
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [sgas]
  []
  [massfrac0]
  []
[]
[AuxVariables]
  [massfrac1]
  []
[]
[ICs]
  [sgas]
    type = RandomIC
    variable = sgas
    max = 1
    min = 0
  []
  [massfrac0]
    type = RandomIC
    variable = massfrac0
    min = 0
    max = 1
  []
  [massfrac1]
    type = RandomIC
    variable = massfrac1
    min = 0
    max = 1
  []
[]
[Kernels]
  [diff0]
    type = PorousFlowDispersiveFlux
    fluid_component = 0
    variable = sgas
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
  [diff1]
    type = PorousFlowDispersiveFlux
    fluid_component = 1
    variable = massfrac0
    gravity = '1 0 0'
    disp_long = '0 0'
    disp_trans = '0 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'sgas massfrac0'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 10
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 0.1
  []
[]
[Materials]
  [temp]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = 1
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac0 massfrac1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [poro]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [diff]
    type = PorousFlowDiffusivityMillingtonQuirk
    diffusion_coeff = '1e-2 1e-1 1e-2 1e-1'
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityConst
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityConst
    phase = 1
  []
[]
[Preconditioning]
  active = smp
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/gravity/grav02e_fv.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, constant capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with no residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-10 0 0'
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = 1.5e6
  []
  [sgas]
    type = MooseVariableFVReal
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [ppgas]
    type = MooseVariableFVReal
  []
  [swater]
    type = MooseVariableFVReal
  []
  [relpermwater]
    type = MooseVariableFVReal
  []
  [relpermgas]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = ADPorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
    execute_on = 'initial timestep_end'
  []
  [swater]
    type = ADPorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
    execute_on = 'initial timestep_end'
  []
  [relpermwater]
    type = ADPorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = relpermwater
    execute_on = 'initial timestep_end'
  []
  [relpermgas]
    type = ADPorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
    execute_on = 'initial timestep_end'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[VectorPostprocessors]
  [vars]
    type = ElementValueSampler
    variable = 'ppgas ppwater sgas swater'
    sort_by = x
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 5e3
  nl_abs_tol = 1e-12
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e3
  []
[]
[Outputs]
  execute_on = 'final'
  perf_graph = true
  csv = true
[]
(modules/porous_flow/test/tests/chemistry/precipitation_2phase.i)
# Using a two-phase system (see precipitation.i for the single-phase)
# The saturation and porosity are chosen so that the results are identical to precipitation.i
#
# The precipitation reaction
#
# a <==> mineral
#
# produces "mineral".  Using mineral_density = fluid_density, theta = 1 = eta, the DE is
#
# a' = -(mineral / (porosity * saturation))' = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#
# The following parameters are used
#
# T_ref = 0.5 K
# T = 1 K
# activation_energy = 3 J/mol
# gas_constant = 6 J/(mol K)
# kinetic_rate_at_ref_T = 0.60653 mol/(m^2 s)
# These give rate = 0.60653 * exp(1/2) = 1 mol/(m^2 s)
#
# surf_area = 0.5 m^2/L
# molar_volume = 2 L/mol
# These give rate * surf_area * molar_vol = 1 s^-1
#
# equilibrium_constant = 0.5 (dimensionless)
# primary_activity_coefficient = 2 (dimensionless)
# stoichiometry = 1 (dimensionless)
# This means that 1 - (1 / eqm_const) * (act_coeff * a)^stoi = 1 - 4 a, which is negative for a > 0.25, ie precipitation for a(t=0) > 0.25
#
# The solution of the DE is
# a = eqm_const / act_coeff + (a(t=0) - eqm_const / act_coeff) exp(-rate * surf_area * molar_vol * act_coeff * t / eqm_const)
#   = 0.25 + (a(t=0) - 0.25) exp(-4 * t)
# c = c(t=0) - (a - a(t=0)) * (porosity * saturation)
#
# This test checks that (a + c / (porosity * saturation)) is time-independent, and that a follows the above solution
#
# Aside:
#    The exponential curve is not followed exactly because moose actually solves
#    (a - a_old)/dt = rate * surf_area * molar_vol (1 - (1 / eqm_const) * (act_coeff * a)^stoi)
#    which does not give an exponential exactly, except in the limit dt->0
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[Variables]
  [a]
    initial_condition = 0.9
  []
[]
[AuxVariables]
  [eqm_k]
    initial_condition = 0.5
  []
  [pressure0]
  []
  [saturation1]
    initial_condition = 0.25
  []
  [b]
    initial_condition = 0.123
  []
  [ini_mineral_conc]
    initial_condition = 0.2
  []
  [mineral]
    family = MONOMIAL
    order = CONSTANT
  []
  [should_be_static]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [mineral]
    type = PorousFlowPropertyAux
    property = mineral_concentration
    mineral_species = 0
    variable = mineral
  []
  [should_be_static]
    type = ParsedAux
    coupled_variables = 'mineral a'
    expression = 'a + mineral / 0.1'
    variable = should_be_static
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Kernels]
  [mass_a]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = a
  []
  [pre_dis]
    type = PorousFlowPreDis
    variable = a
    mineral_density = 1000
    stoichiometry = 1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = a
    number_fluid_phases = 2
    number_fluid_components = 2
    number_aqueous_kinetic = 1
    aqueous_phase_number = 1
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
  []
[]
[FluidProperties]
  [simple_fluid]
    type = SimpleFluidProperties
    bulk_modulus = 2e9 # huge, so mimic chemical_reactions
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 1
  []
  [ppss]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pressure0
    phase1_saturation = saturation1
  []
  [mass_frac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'b a'
  []
  [predis]
    type = PorousFlowAqueousPreDisChemistry
    primary_concentrations = a
    num_reactions = 1
    equilibrium_constants = eqm_k
    primary_activity_coefficients = 2
    reactions = 1
    specific_reactive_surface_area = 0.5
    kinetic_rate_constant = 0.6065306597126334
    activation_energy = 3
    molar_volume = 2
    gas_constant = 6
    reference_temperature = 0.5
  []
  [mineral_conc]
    type = PorousFlowAqueousPreDisMineral
    initial_concentrations = ini_mineral_conc
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.4
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1E-10
  dt = 0.01
  end_time = 1
[]
[Postprocessors]
  [a]
    type = PointValue
    point = '0 0 0'
    variable = a
  []
  [should_be_static]
    type = PointValue
    point = '0 0 0'
    variable = should_be_static
  []
[]
[Outputs]
  time_step_interval = 10
  csv = true
  perf_graph = true
[]
(modules/porous_flow/examples/restart/gas_injection_new_mesh.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, the mesh is not identical to the mesh used in gravityeq.i. Rather, it is
# generated so that it is more refined near the injection boundary and at the top of
# the model, as that is where the gas plume will be present.
#
# To use the hydrostatic pressure calculated using the gravity equilibrium run as the initial
# condition for the pressure, a SolutionUserObject is used, along with a SolutionFunction to
# interpolate the pressure from the gravity equilibrium run to the initial condition for liqiud
# porepressure in this example.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we use a mesh shifted 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 25
  nx = 50
  ymax = 100
  xmin = 0.1
  xmax = 5000
  bias_x = 1.05
  bias_y = 0.95
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -9.81 0'
  temperature_unit = Celsius
[]
[Variables]
  [pp_liq]
  []
  [sat_gas]
    initial_condition = 0
  []
[]
[ICs]
  [ppliq_ic]
    type = FunctionIC
    variable = pp_liq
    function = ppliq_ic
  []
[]
[AuxVariables]
  [temperature]
    initial_condition = 50
  []
  [xnacl]
    initial_condition = 0.1
  []
  [brine_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [methane_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [pp_gas]
    family = MONOMIAL
    order = CONSTANT
  []
  [sat_liq]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp_liq
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = pp_liq
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = sat_gas
    fluid_component = 1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sat_gas
    fluid_component = 1
  []
[]
[AuxKernels]
  [brine_density]
    type = PorousFlowPropertyAux
    property = density
    variable = brine_density
    execute_on = 'initial timestep_end'
  []
  [methane_density]
    type = PorousFlowPropertyAux
    property = density
    variable = methane_density
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [pp_gas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pp_gas
    execute_on = 'initial timestep_end'
  []
  [sat_liq]
    type = PorousFlowPropertyAux
    property = saturation
    variable = sat_liq
    execute_on = 'initial timestep_end'
  []
[]
[BCs]
  [gas_injection]
    type = PorousFlowSink
    boundary = left
    variable = sat_gas
    flux_function = injection_rate
    fluid_phase = 1
  []
  [brine_out]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pp_liq
    multipliers = '0 1e9'
    pt_vals = '0 1e9'
    fluid_phase = 0
    flux_function = 1e-6
    use_mobility = true
    use_relperm = true
    mass_fraction_component = 0
  []
[]
[Functions]
  [injection_rate]
    type = ParsedFunction
    symbol_values = injection_area
    symbol_names = area
    expression = '-1/area'
  []
  [ppliq_ic]
    type = SolutionFunction
    solution = soln
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp_liq sat_gas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.2
    pc_max = 1e7
  []
  [soln]
    type = SolutionUserObject
    mesh = gravityeq_out.e
    system_variables = porepressure
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
  [methane]
    type = MethaneFluidProperties
  []
  [methane_tab]
    type = TabulatedBicubicFluidProperties
    fp = methane
    save_file = false
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ps]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp_liq
    phase1_saturation = sat_gas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [brine]
    type = PorousFlowBrine
    compute_enthalpy = false
    compute_internal_energy = false
    xnacl = xnacl
    phase = 0
  []
  [methane]
    type = PorousFlowSingleComponentFluid
    compute_enthalpy = false
    compute_internal_energy = false
    fp = methane_tab
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-13 0 0 0 5e-14 0  0 0 1e-13'
  []
  [relperm_liq]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.2
    sum_s_res = 0.3
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.3
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
    petsc_options_value = ' asm      lu           NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e8
  nl_abs_tol = 1e-12
  nl_rel_tol = 1e-06
  nl_max_its = 20
  dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e1
    growth_factor = 1.5
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [injection_area]
    type = AreaPostprocessor
    boundary = left
    execute_on = initial
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
[]
(modules/porous_flow/test/tests/mass_conservation/mass07.i)
# Checking that the mass postprocessor throws the correct error if
# too many phases are supplied
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1 2'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    family = MONOMIAL
    order = FIRST
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    family = MONOMIAL
    order = FIRST
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/examples/thm_example/2D.i)
# Two phase, temperature-dependent, with mechanics, radial with fine mesh, constant injection of cold co2 into a overburden-reservoir-underburden containing mostly water
# species=0 is water
# species=1 is co2
# phase=0 is liquid, and since massfrac_ph0_sp0 = 1, this is all water
# phase=1 is gas, and since massfrac_ph1_sp0 = 0, this is all co2
#
# The mesh used below has very high resolution, so the simulation takes a long time to complete.
# Some suggested meshes of different resolution:
# nx=50, bias_x=1.2
# nx=100, bias_x=1.1
# nx=200, bias_x=1.05
# nx=400, bias_x=1.02
# nx=1000, bias_x=1.01
# nx=2000, bias_x=1.003
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2000
  bias_x = 1.003
  xmin = 0.1
  xmax = 5000
  ny = 1
  ymin = 0
  ymax = 11
  coord_type = RZ
[]
[GlobalParams]
  displacements = 'disp_r disp_z'
  PorousFlowDictator = dictator
  gravity = '0 0 0'
  biot_coefficient = 1.0
[]
[Variables]
  [pwater]
    initial_condition = 18.3e6
  []
  [sgas]
    initial_condition = 0.0
  []
  [temp]
    initial_condition = 358
  []
  [disp_r]
  []
[]
[AuxVariables]
  [rate]
  []
  [disp_z]
  []
  [massfrac_ph0_sp0]
    initial_condition = 1 # all H20 in phase=0
  []
  [massfrac_ph1_sp0]
    initial_condition = 0 # no H2O in phase=1
  []
  [pgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [stress_rr]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_tt]
    order = CONSTANT
    family = MONOMIAL
  []
  [stress_zz]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[Kernels]
  [mass_water_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux_water]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    use_displaced_mesh = false
    variable = pwater
  []
  [mass_co2_dot]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux_co2]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    use_displaced_mesh = false
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temp
  []
  [advection]
    type = PorousFlowHeatAdvection
    use_displaced_mesh = false
    variable = temp
  []
  [conduction]
    type = PorousFlowExponentialDecay
    use_displaced_mesh = false
    variable = temp
    reference = 358
    rate = rate
  []
  [grad_stress_r]
    type = StressDivergenceRZTensors
    temperature = temp
    eigenstrain_names = thermal_contribution
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
  [poro_r]
    type = PorousFlowEffectiveStressCoupling
    variable = disp_r
    use_displaced_mesh = false
    component = 0
  []
[]
[AuxKernels]
  [rate]
    type = FunctionAux
    variable = rate
    execute_on = timestep_begin
    function = decay_rate
  []
  [pgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [stress_rr]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_rr
    index_i = 0
    index_j = 0
  []
  [stress_tt]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_tt
    index_i = 2
    index_j = 2
  []
  [stress_zz]
    type = RankTwoAux
    rank_two_tensor = stress
    variable = stress_zz
    index_i = 1
    index_j = 1
  []
[]
[Functions]
  [decay_rate]
# Eqn(26) of the first paper of LaForce et al.
# Ka * (rho C)_a = 10056886.914
# h = 11
    type = ParsedFunction
    expression = 'sqrt(10056886.914/t)/11.0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'temp pwater sgas disp_r'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [water]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 970.0
    viscosity = 0.3394e-3
    cv = 4149.0
    cp = 4149.0
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
  [co2]
    type = SimpleFluidProperties
    bulk_modulus = 2.27e14
    density0 = 516.48
    viscosity = 0.0393e-3
    cv = 2920.5
    cp = 2920.5
    porepressure_coefficient = 0.0
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temp
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [water]
    type = PorousFlowSingleComponentFluid
    fp = water
    phase = 0
  []
  [gas]
    type = PorousFlowSingleComponentFluid
    fp = co2
    phase = 1
  []
  [porosity_reservoir]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability_reservoir]
    type = PorousFlowPermeabilityConst
    permeability = '2e-12 0 0  0 0 0  0 0 0'
  []
  [relperm_liquid]
    type = PorousFlowRelativePermeabilityCorey
    n = 4
    phase = 0
    s_res = 0.200
    sum_s_res = 0.405
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    s_res = 0.205
    sum_s_res = 0.405
    nw_phase = true
    lambda = 2
  []
  [thermal_conductivity_reservoir]
    type = PorousFlowThermalConductivityIdeal
    dry_thermal_conductivity = '0 0 0  0 1.320 0  0 0 0'
    wet_thermal_conductivity = '0 0 0  0 3.083 0  0 0 0'
  []
  [internal_energy_reservoir]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1100
    density = 2350.0
  []
  [elasticity_tensor]
    type = ComputeIsotropicElasticityTensor
    shear_modulus = 6.0E9
    poissons_ratio = 0.2
  []
  [strain]
    type = ComputeAxisymmetricRZSmallStrain
    eigenstrain_names = 'thermal_contribution ini_stress'
  []
  [ini_strain]
    type = ComputeEigenstrainFromInitialStress
    initial_stress = '-12.8E6 0 0  0 -51.3E6 0  0 0 -12.8E6'
    eigenstrain_name = ini_stress
  []
  [thermal_contribution]
    type = ComputeThermalExpansionEigenstrain
    temperature = temp
    stress_free_temperature = 358
    thermal_expansion_coeff = 5E-6
    eigenstrain_name = thermal_contribution
  []
  [stress]
    type = ComputeLinearElasticStress
  []
  [eff_fluid_pressure]
    type = PorousFlowEffectiveFluidPressure
  []
  [vol_strain]
    type = PorousFlowVolumetricStrain
  []
[]
[BCs]
  [outer_pressure_fixed]
    type = DirichletBC
    boundary = right
    value = 18.3e6
    variable = pwater
  []
  [outer_saturation_fixed]
    type = DirichletBC
    boundary = right
    value = 0.0
    variable = sgas
  []
  [outer_temp_fixed]
    type = DirichletBC
    boundary = right
    value = 358
    variable = temp
  []
  [fixed_outer_r]
    type = DirichletBC
    variable = disp_r
    value = 0
    boundary = right
  []
  [co2_injection]
    type = PorousFlowSink
    boundary = left
    variable = sgas
    use_mobility = false
    use_relperm = false
    fluid_phase = 1
    flux_function = 'min(t/100.0,1)*(-2.294001475)' # 5.0E5 T/year = 15.855 kg/s, over area of 2Pi*0.1*11
  []
  [cold_co2]
    type = DirichletBC
    boundary = left
    variable = temp
    value = 294
  []
  [cavity_pressure_x]
    type = Pressure
    boundary = left
    variable = disp_r
    component = 0
    postprocessor = p_bh # note, this lags
    use_displaced_mesh = false
  []
[]
[Postprocessors]
  [p_bh]
    type = PointValue
    variable = pwater
    point = '0.1 0 0'
    execute_on = timestep_begin
    use_displaced_mesh = false
  []
[]
[VectorPostprocessors]
  [ptsuss]
    type = LineValueSampler
    use_displaced_mesh = false
    start_point = '0.1 0 0'
    end_point = '5000 0 0'
    sort_by = x
    num_points = 50000
    outputs = csv
    variable = 'pwater temp sgas disp_r stress_rr stress_tt'
  []
[]
[Preconditioning]
  active = 'smp'
  [smp]
    type = SMP
    full = true
    #petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E2       1E-5        500'
  []
  [mumps]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -pc_factor_mat_solver_package -pc_factor_shift_type -snes_rtol -snes_atol -snes_max_it'
    petsc_options_value = 'gmres      lu       mumps                         NONZERO               1E-5       1E2       50'
  []
[]
[Executioner]
  type = Transient
  solve_type = NEWTON
  end_time = 1.5768e8
  #dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
    growth_factor = 1.1
  []
[]
[Outputs]
  print_linear_residuals = false
  sync_times = '3600 86400 2.592E6 1.5768E8'
  perf_graph = true
  exodus = true
  [csv]
    type = CSV
    sync_only = true
  []
[]
(modules/porous_flow/test/tests/aux_kernels/properties.i)
# Example of accessing properties using the PorousFlowPropertyAux AuxKernel for
# each phase and fluid component (as required).
[Mesh]
  type = GeneratedMesh
  dim = 2
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pwater]
    initial_condition = 1e6
  []
  [sgas]
    initial_condition = 0.3
  []
  [temperature]
    initial_condition = 50
  []
[]
[AuxVariables]
  [x0_water]
    order = FIRST
    family = LAGRANGE
    initial_condition = 0.1
  []
  [x0_gas]
    order = FIRST
    family = LAGRANGE
    initial_condition = 0.8
  []
  [pressure_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [capillary_pressure]
    order = CONSTANT
    family = MONOMIAL
  []
  [saturation_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [density_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [viscosity_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [x1_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [relperm_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [relperm_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [enthalpy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
  [energy_water]
    order = CONSTANT
    family = MONOMIAL
  []
  [energy_gas]
    order = CONSTANT
    family = MONOMIAL
  []
[]
[AuxKernels]
  [pressure_gas]
    type = PorousFlowPropertyAux
    variable = pressure_gas
    property = pressure
    phase = 1
    execute_on = timestep_end
  []
  [capillary_pressure]
    type = PorousFlowPropertyAux
    variable = capillary_pressure
    property = capillary_pressure
    execute_on = timestep_end
  []
  [saturation_water]
    type = PorousFlowPropertyAux
    variable = saturation_water
    property = saturation
    phase = 0
    execute_on = timestep_end
  []
  [density_water]
    type = PorousFlowPropertyAux
    variable = density_water
    property = density
    phase = 0
    execute_on = timestep_end
  []
  [density_gas]
    type = PorousFlowPropertyAux
    variable = density_gas
    property = density
    phase = 1
    execute_on = timestep_end
  []
  [viscosity_water]
    type = PorousFlowPropertyAux
    variable = viscosity_water
    property = viscosity
    phase = 0
    execute_on = timestep_end
  []
  [viscosity_gas]
    type = PorousFlowPropertyAux
    variable = viscosity_gas
    property = viscosity
    phase = 1
    execute_on = timestep_end
  []
  [relperm_water]
    type = PorousFlowPropertyAux
    variable = relperm_water
    property = relperm
    phase = 0
    execute_on = timestep_end
  []
  [relperm_gas]
    type = PorousFlowPropertyAux
    variable = relperm_gas
    property = relperm
    phase = 1
    execute_on = timestep_end
  []
  [x1_water]
    type = PorousFlowPropertyAux
    variable = x1_water
    property = mass_fraction
    phase = 0
    fluid_component = 1
    execute_on = timestep_end
  []
  [x1_gas]
    type = PorousFlowPropertyAux
    variable = x1_gas
    property = mass_fraction
    phase = 1
    fluid_component = 1
    execute_on = timestep_end
  []
  [enthalpy_water]
    type = PorousFlowPropertyAux
    variable = enthalpy_water
    property = enthalpy
    phase = 0
    execute_on = timestep_end
  []
  [enthalpy_gas]
    type = PorousFlowPropertyAux
    variable = enthalpy_gas
    property = enthalpy
    phase = 1
    execute_on = timestep_end
  []
  [energy_water]
    type = PorousFlowPropertyAux
    variable = energy_water
    property = internal_energy
    phase = 0
    execute_on = timestep_end
  []
  [energy_gas]
    type = PorousFlowPropertyAux
    variable = energy_gas
    property = internal_energy
    phase = 1
    execute_on = timestep_end
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater sgas temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-5
    pc_max = 1e7
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
    cv = 2
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-4
    density0 = 20
    thermal_expansion = 0
    cv = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'x0_water x0_gas'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
  nl_abs_tol = 1e-12
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Outputs]
  exodus = true
[]
(modules/porous_flow/examples/restart/gas_injection.i)
# Using the results from the equilibrium run to provide the initial condition for
# porepressure, we now inject a gas phase into the brine-saturated reservoir. In this
# example, where the mesh used is identical to the mesh used in gravityeq.i, we can use
# the basic restart capability by simply setting the initial condition for porepressure
# using the results from gravityeq.i.
#
# Even though the gravity equilibrium is established using a 2D mesh, in this example,
# we shift the mesh 0.1 m to the right and rotate it about the Y axis to make a 2D radial
# model.
#
# Methane injection takes place over the surface of the hole created by rotating the mesh,
# and hence the injection area is 2 pi r h. We can calculate this using an AreaPostprocessor,
# and then use this in a ParsedFunction to calculate the injection rate so that 10 kg/s of
# methane is injected.
#
# Results can be improved by uniformly refining the initial mesh.
#
# Note: as this example uses the results from a previous simulation, gravityeq.i MUST be
# run before running this input file.
[Mesh]
  uniform_refine = 1
  [file]
    type = FileMeshGenerator
    file = gravityeq_out.e
  []
  [translate]
    type = TransformGenerator
    transform = TRANSLATE
    vector_value = '0.1 0 0'
    input = file
  []
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -9.81 0'
  temperature_unit = Celsius
[]
[Variables]
  [pp_liq]
    initial_from_file_var = porepressure
  []
  [sat_gas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [temperature]
    initial_condition = 50
  []
  [xnacl]
    initial_condition = 0.1
  []
  [brine_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [methane_density]
    family = MONOMIAL
    order = CONSTANT
  []
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [pp_gas]
    family = MONOMIAL
    order = CONSTANT
  []
  [sat_liq]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    variable = pp_liq
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    variable = pp_liq
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    variable = sat_gas
    fluid_component = 1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    variable = sat_gas
    fluid_component = 1
  []
[]
[AuxKernels]
  [brine_density]
    type = PorousFlowPropertyAux
    property = density
    variable = brine_density
    execute_on = 'initial timestep_end'
  []
  [methane_density]
    type = PorousFlowPropertyAux
    property = density
    variable = methane_density
    phase = 1
    execute_on = 'initial timestep_end'
  []
  [pp_gas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = pp_gas
    execute_on = 'initial timestep_end'
  []
  [sat_liq]
    type = PorousFlowPropertyAux
    property = saturation
    variable = sat_liq
    execute_on = 'initial timestep_end'
  []
[]
[BCs]
  [gas_injection]
    type = PorousFlowSink
    boundary = left
    variable = sat_gas
    flux_function = injection_rate
    fluid_phase = 1
  []
  [brine_out]
    type = PorousFlowPiecewiseLinearSink
    boundary = right
    variable = pp_liq
    multipliers = '0 1e9'
    pt_vals = '0 1e9'
    fluid_phase = 0
    flux_function = 1e-6
    use_mobility = true
  []
[]
[Functions]
  [injection_rate]
    type = ParsedFunction
    symbol_values = injection_area
    symbol_names = area
    expression = '-10/area'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp_liq sat_gas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.2
  []
[]
[FluidProperties]
  [brine]
    type = BrineFluidProperties
  []
  [methane]
    type = MethaneFluidProperties
  []
  [methane_tab]
    type = TabulatedBicubicFluidProperties
    fp = methane
    save_file = false
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = temperature
  []
  [ps]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp_liq
    phase1_saturation = sat_gas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [brine]
    type = PorousFlowBrine
    compute_enthalpy = false
    compute_internal_energy = false
    xnacl = xnacl
    phase = 0
  []
  [methane]
    type = PorousFlowSingleComponentFluid
    compute_enthalpy = false
    compute_internal_energy = false
    fp = methane_tab
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-13 0 0 0 1e-13 0  0 0 1e-13'
  []
  [relperm_liq]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.2
    sum_s_res = 0.3
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
    s_res = 0.1
    sum_s_res = 0.3
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -sub_pc_type -sub_pc_factor_shift_type'
    petsc_options_value = ' asm      lu           NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e8
  nl_abs_tol = 1e-12
  nl_rel_tol = 1e-06
  nl_max_its = 20
  dtmax = 1e6
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e1
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
  [injection_area]
    type = AreaPostprocessor
    boundary = left
    execute_on = initial
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  exodus = true
  perf_graph = true
  checkpoint = true
[]
(modules/porous_flow/test/tests/mass_conservation/mass10.i)
# Checking that the mass postprocessor throws the correct error when kernel_variable_numer is illegal
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    kernel_variable_number = 2
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/mass_conservation/mass05.i)
# Checking that the mass postprocessor correctly calculates the mass
# of each component in each phase, as well as the total mass of each
# component in all phases.
# 2phase, 2component, constant porosity
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 2
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 0.3
  []
  [massfrac_ph1_sp0]
    initial_condition = 0.55
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp0_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 0
  []
  [comp0_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = 1
  []
  [comp0_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 0
  []
  [comp0_total_mass2]
    type = PorousFlowFluidMass
    fluid_component = 0
    phase = '0 1'
  []
  [comp1_phase0_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 0
  []
  [comp1_phase1_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 1
  []
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
  [comp1_total_mass2]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = '0 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  nl_abs_tol = 1e-16
  dt = 1
  end_time = 1
[]
[Outputs]
  execute_on = 'timestep_end'
  file_base = mass05
  csv = true
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_fv.i)
# Pressure pulse in 1D with 2 phases, 2components - transient using FV
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
    nx = 10
    xmin = 0
    xmax = 100
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    type = MooseVariableFVReal
    initial_condition = 2e6
  []
  [sgas]
    type = MooseVariableFVReal
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    type = MooseVariableFVReal
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    type = MooseVariableFVReal
    initial_condition = 0
  []
  [ppgas]
    type = MooseVariableFVReal
  []
[]
[FVKernels]
  [mass0]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = FVPorousFlowAdvectiveFlux
    variable = ppwater
    fluid_component = 0
  []
  [mass1]
    type = FVPorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = FVPorousFlowAdvectiveFlux
    variable = sgas
    fluid_component = 1
  []
[]
[AuxKernels]
  [ppgas]
    type = ADPorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = ADPorousFlowTemperature
  []
  [ppss]
    type = ADPorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = ADPorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = ADPorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = ADPorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = ADPorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = ADPorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[FVBCs]
  [leftwater]
    type = FVDirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = FVDirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
  [sgas]
    type = FVDirichletBC
    boundary = 'left right'
    value = 0.3
    variable = sgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = ElementValueSampler
    sort_by = x
    variable = 'ppwater ppgas'
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS_fv
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
  exodus = true
[]
(modules/porous_flow/test/tests/relperm/corey3.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
    family = LAGRANGE
    order = FIRST
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 2
    s_res = 0.2
    sum_s_res = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
    s_res = 0.3
    sum_s_res = 0.5
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/hysteresis/relperm_jac.i)
# Test of derivatives computed in PorousFlowHystereticRelativePermeability classes along zeroth-order curve
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-1 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 10.0
    m = 0.33
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[FluidProperties]
  [simple_fluid_0]
    type = SimpleFluidProperties
    bulk_modulus = 10
    viscosity = 1
  []
  [simple_fluid_1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    viscosity = 3
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
  [pc_calculator]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [relperm_liquid]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    liquid_modification_range = 0.9
  []
  [relperm_gas]
    type = PorousFlowHystereticRelativePermeabilityGas
    phase = 1
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    gamma = 0.33
    k_rg_max = 0.8
    gas_low_extension_type = linear_like
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_check_jacobian'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/pressure_pulse/pressure_pulse_1d_2phasePS_KT.i)
# Pressure pulse in 1D with 2 phases, 2components - transient
# Using KT stabilization
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 2e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass_component0]
    type = PorousFlowMassTimeDerivative
    variable = ppwater
    fluid_component = 0
  []
  [flux_component0_phase0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = ppwater
    advective_flux_calculator = afc_component0_phase0
  []
  [flux_component0_phase1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = ppwater
    advective_flux_calculator = afc_component0_phase1
  []
  [mass_component1]
    type = PorousFlowMassTimeDerivative
    variable = sgas
    fluid_component = 1
  []
  [flux_component1_phase0]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = sgas
    advective_flux_calculator = afc_component1_phase0
  []
  [flux_component1_phase1]
    type = PorousFlowFluxLimitedTVDAdvection
    variable = sgas
    advective_flux_calculator = afc_component1_phase1
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
  [afc_component0_phase0]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 0
    phase = 0
    flux_limiter_type = superbee
  []
  [afc_component0_phase1]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 0
    phase = 1
    flux_limiter_type = superbee
  []
  [afc_component1_phase0]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 1
    phase = 0
    flux_limiter_type = superbee
  []
  [afc_component1_phase1]
    type = PorousFlowAdvectiveFluxCalculatorUnsaturatedMultiComponent
    fluid_component = 1
    phase = 1
    flux_limiter_type = superbee
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    thermal_expansion = 0
    viscosity = 1e-3
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e7
    density0 = 1
    thermal_expansion = 0
    viscosity = 1e-5
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-15 0 0 0 1e-15 0 0 0 1e-15'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [leftwater]
    type = DirichletBC
    boundary = left
    value = 3e6
    variable = ppwater
  []
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 2e6
    variable = ppwater
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-20 10000'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1e3
  end_time = 1e4
[]
[VectorPostprocessors]
  [pp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    sort_by = x
    variable = 'ppwater ppgas'
    start_point = '0 0 0'
    end_point = '100 0 0'
    num_points = 11
  []
[]
[Outputs]
  file_base = pressure_pulse_1d_2phasePS_KT
  print_linear_residuals = false
  [csv]
    type = CSV
    execute_on = final
  []
[]
(modules/porous_flow/test/tests/mass_conservation/mass08.i)
# Checking that the mass postprocessor throws the correct error when a given phase index
# is too large
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    phase = 2
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/relperm/corey4.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
    family = LAGRANGE
    order = FIRST
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    scaling = 0.1
    phase = 0
    n = 2
    s_res = 0.2
    sum_s_res = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    scaling = 10.0
    phase = 1
    n = 2
    s_res = 0.3
    sum_s_res = 0.5
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/actions/addmaterials.i)
# Test that the PorousFlowAddMaterialAction correctly handles the case where
# materials are added with the default add_nodes parameter, as well as
# at_nodes = true, to make sure that the action doesn't add a duplicate material
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pwater]
    initial_condition = 1e6
  []
  [sgas]
    initial_condition = 0.3
  []
  [temperature]
    initial_condition = 50
  []
[]
[AuxVariables]
  [x0]
    initial_condition = 0.1
  []
  [x1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater sgas temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-5
    pc_max = 1e7
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
    cv = 2
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-4
    density0 = 20
    thermal_expansion = 0
    cv = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [temperature_nodal]
    type = PorousFlowTemperature
    at_nodes = true
    temperature = 50
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [ppss_nodal]
    type = PorousFlow2PhasePS
    at_nodes = true
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'x0 x1'
  []
  [massfrac_nodal]
    type = PorousFlowMassFraction
    at_nodes = true
    mass_fraction_vars = 'x0 x1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid0_nodal]
    type = PorousFlowSingleComponentFluid
    at_nodes = true
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [simple_fluid1_nodal]
    type = PorousFlowSingleComponentFluid
    at_nodes = true
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.11
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    s_res = 0.01
    sum_s_res = 0.11
  []
  [relperm0_nodal]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    at_nodes = true
  []
  [relperm1_nodal]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    at_nodes = true
  []
  [porosity_nodal]
    type = PorousFlowPorosityConst
    porosity = 0.1
    at_nodes = true
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [unused]
    type = GenericConstantMaterial
    prop_names = unused
    prop_values = 0
  []
[]
[Executioner]
  type = Transient
  end_time = 1
  nl_abs_tol = 1e-14
[]
(modules/porous_flow/test/tests/actions/addmaterials2.i)
# Test that the PorousFlowAddMaterialAction correctly handles the case where
# the at_nodes parameter isn't provided. In this case, only a single material
# is given, and the action must correctly identify if materials should be added
# at the nodes, qps, or even both
[Mesh]
  type = GeneratedMesh
  dim = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [pwater]
    initial_condition = 1e6
  []
  [sgas]
    initial_condition = 0.3
  []
  [temperature]
    initial_condition = 50
  []
[]
[AuxVariables]
  [x0]
    initial_condition = 0.1
  []
  [x1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pwater
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
  [energy_dot]
    type = PorousFlowEnergyTimeDerivative
    variable = temperature
  []
  [heat_advection]
    type = PorousFlowHeatAdvection
    variable = temperature
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pwater sgas temperature'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1e-5
    pc_max = 1e7
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-3
    density0 = 1000
    thermal_expansion = 0
    cv = 2
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1e9
    viscosity = 1e-4
    density0 = 20
    thermal_expansion = 0
    cv = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
    temperature = 50
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'x0 x1'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.11
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    s_res = 0.01
    sum_s_res = 0.11
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [rock_heat]
    type = PorousFlowMatrixInternalEnergy
    specific_heat_capacity = 1.0
    density = 125
  []
  [unused]
    type = GenericConstantMaterial
    prop_names = unused
    prop_values = 0
  []
[]
[Executioner]
  type = Transient
  end_time = 1
  nl_abs_tol = 1e-14
[]
(modules/porous_flow/test/tests/gravity/grav02e.i)
# Checking that gravity head is established in the transient situation when 0<=saturation<=1 (note the less-than-or-equal-to).
# 2phase (PS), 2components, constant capillary pressure, constant fluid bulk-moduli for each phase, constant viscosity,
# constant permeability, Corey relative permeabilities with no residual saturation
[Mesh]
  type = GeneratedMesh
  dim = 2
  ny = 10
  ymax = 100
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 -10 0'
[]
[Variables]
  [ppwater]
    initial_condition = 1.5e6
  []
  [sgas]
    initial_condition = 0.3
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [ppgas]
    family = MONOMIAL
    order = FIRST
  []
  [swater]
    family = MONOMIAL
    order = FIRST
  []
  [relpermwater]
    family = MONOMIAL
    order = FIRST
  []
  [relpermgas]
    family = MONOMIAL
    order = FIRST
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[AuxKernels]
  [ppgas]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = ppgas
  []
  [swater]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = swater
  []
  [relpermwater]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = relpermwater
  []
  [relpermgas]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = relpermgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-11 0 0 0 1e-11 0  0 0 1e-11'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 1
  []
[]
[Postprocessors]
  [mass_ph0]
    type = PorousFlowFluidMass
    fluid_component = 0
    execute_on = 'initial timestep_end'
  []
  [mass_ph1]
    type = PorousFlowFluidMass
    fluid_component = 1
    execute_on = 'initial timestep_end'
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol'
    petsc_options_value = 'bcgs bjacobi 1E-12 1E-10'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e5
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1e4
  []
[]
[Outputs]
  execute_on = 'initial timestep_end'
  file_base = grav02e
  exodus = true
  perf_graph = true
  csv = false
[]
(modules/porous_flow/test/tests/mass_conservation/mass09.i)
# Checking that the mass postprocessor throws the correct error when more than a single
# phase index is given when using the saturation_threshold parameter
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 10
  xmin = 0
  xmax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [pp]
  []
  [sat]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[ICs]
  [pinit]
    type = ConstantIC
    value = 1
    variable = pp
  []
  [satinit]
    type = FunctionIC
    function = 1-x
    variable = sat
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'pp sat'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    density0 = 0.1
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = pp
    phase1_saturation = sat
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Postprocessors]
  [comp1_total_mass]
    type = PorousFlowFluidMass
    fluid_component = 1
    saturation_threshold = 0.5
    phase = '0 1'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/jacobian/fflux07.i)
# 2phase (PS), 2components (that exist in both phases), constant viscosity, constant insitu permeability
# density with constant bulk, Corey relative perm, nonzero gravity, vanGenuchten capillary pressure
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 2
  xmin = 0
  xmax = 1
  ny = 1
  ymin = 0
  ymax = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [sgas]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
  []
  [massfrac_ph1_sp0]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = 0
    max = 1
  []
  [ppgas]
    type = RandomIC
    variable = sgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 1
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 1
  []
[]
[Kernels]
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
    gravity = '-1 -0.1 0'
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
    gravity = '-1 -0.1 0'
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 10
    sat_lr = 0.1
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
    viscosity = 1
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
    viscosity = 1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0 0 2 0 0 0 3'
  []
  [relperm0]
    type = PorousFlowRelativePermeabilityCorey
    n = 2
    phase = 0
    s_res = 0.1
    sum_s_res = 0.1
  []
  [relperm1]
    type = PorousFlowRelativePermeabilityCorey
    n = 3
    phase = 1
    s_res = 0.0
    sum_s_res = 0.1
  []
[]
[Preconditioning]
  active = check
  [andy]
    type = SMP
    full = true
    petsc_options_iname = '-ksp_type -pc_type -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'bcgs bjacobi 1E-15 1E-10 10000'
  []
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-snes_type'
    petsc_options_value = 'test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/relperm/corey1.i)
# Test Corey relative permeability curve by varying saturation over the mesh
# Corey exponent n = 1 for both phases (linear residual saturation)
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityCorey
    phase = 0
    n = 1
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 1
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/relperm/brooks_corey2.i)
# Test Brooks-Corey relative permeability curve by varying saturation over the mesh
# Exponent lambda = 2 for both phases
# Residual saturation of phase 0: s0r = 0.2
# Residual saturation of phase 1: s1r = 0.3
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 20
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [kr1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [kr0]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 0
    variable = kr0aux
  []
  [kr1]
    type = PorousFlowPropertyAux
    property = relperm
    phase = 1
    variable = kr1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityBC
    phase = 0
    lambda = 2
    s_res = 0.2
    sum_s_res = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityBC
    phase = 1
    lambda = 2
    nw_phase = true
    s_res = 0.3
    sum_s_res = 0.5
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    warn_discontinuous_face_values = false
    variable = 's0aux s1aux kr0aux kr1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 20
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-8
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/capillary_pressure/brooks_corey2.i)
# Test Brooks-Corey capillary pressure curve by varying saturation over the mesh
# lambda = 2, sat_lr = 0.1, log_extension = true
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 500
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [p0]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 0
    variable = p0aux
  []
  [p1]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = p1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureBC
    lambda = 2
    log_extension = true
    pe = 1e5
    sat_lr = 0.1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    variable = 's0aux s1aux p0aux p1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 500
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-6
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/jacobian/mass09.i)
# 2phase (PS)
# vanGenuchten, constant-bulk density for each phase, constant porosity, 2components (that exist in both phases)
# unsaturated
[Mesh]
  type = GeneratedMesh
  dim = 2
  nx = 1
  ny = 1
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [ppwater]
  []
  [sgas]
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
  []
  [massfrac_ph1_sp0]
  []
[]
[ICs]
  [ppwater]
    type = RandomIC
    variable = ppwater
    min = 0
    max = 1
  []
  [sgas]
    type = RandomIC
    variable = sgas
    min = 0
    max = 1
  []
  [massfrac_ph0_sp0]
    type = RandomIC
    variable = massfrac_ph0_sp0
    min = 0
    max = 1
  []
  [massfrac_ph1_sp0]
    type = RandomIC
    variable = massfrac_ph1_sp0
    min = 0
    max = 1
  []
[]
[Kernels]
  [mass_sp0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [mass_sp1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    m = 0.5
    alpha = 1
    pc_max = 10
    sat_lr = 0.1
    log_extension = false
    s_scale = 0.9
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 1.5
    density0 = 1
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 0.5
    density0 = 0.5
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
[]
[Preconditioning]
  active = check
  [check]
    type = SMP
    full = true
    petsc_options_iname = '-snes_type'
    petsc_options_value = 'test'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
[Outputs]
  exodus = false
[]
(modules/porous_flow/test/tests/hysteresis/relperm_jac_1.i)
# Test of derivatives computed in PorousFlowHystereticRelativePermeability classes along first-order curve
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '-1 0 0'
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 10.0
    m = 0.33
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0.5
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[FluidProperties]
  [simple_fluid_0]
    type = SimpleFluidProperties
    bulk_modulus = 10
    viscosity = 1
  []
  [simple_fluid_1]
    type = SimpleFluidProperties
    bulk_modulus = 1
    viscosity = 3
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_0
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid_1
    phase = 1
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1 0 0  0 1 0  0 0 1'
  []
  [pc_calculator]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
    initial_order = 1
    previous_turning_points = 0.3
  []
  [relperm_liquid]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    liquid_modification_range = 0.9
  []
  [relperm_gas]
    type = PorousFlowHystereticRelativePermeabilityGas
    phase = 1
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    gamma = 0.33
    k_rg_max = 0.8
    gas_low_extension_type = linear_like
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_check_jacobian'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 1
  end_time = 1
[]
(modules/porous_flow/test/tests/capillary_pressure/brooks_corey1.i)
# Test Brooks-Corey capillary pressure curve by varying saturation over the mesh
# lambda = 2, sat_lr = 0.1, log_extension = false
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 500
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [p0]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 0
    variable = p0aux
  []
  [p1]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = p1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureBC
    lambda = 2
    log_extension = false
    pe = 1e5
    sat_lr = 0.1
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    variable = 's0aux s1aux p0aux p1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 500
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-6
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/capillary_pressure/vangenuchten2.i)
# Test van Genuchten relative permeability curve by varying saturation over the mesh
# van Genuchten exponent m = 0.5 for both phases
# No residual saturation in either phase
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 500
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[Variables]
  [p0]
    initial_condition = 1e6
  []
  [s1]
  []
[]
[AuxVariables]
  [s0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [s1aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p0aux]
    family = MONOMIAL
    order = CONSTANT
  []
  [p1aux]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [s0]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 0
    variable = s0aux
  []
  [s1]
    type = PorousFlowPropertyAux
    property = saturation
    phase = 1
    variable = s1aux
  []
  [p0]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 0
    variable = p0aux
  []
  [p1]
    type = PorousFlowPropertyAux
    property = pressure
    phase = 1
    variable = p1aux
  []
[]
[Functions]
  [s1]
    type = ParsedFunction
    expression = x
  []
[]
[ICs]
  [s1]
    type = FunctionIC
    variable = s1
    function = s1
  []
[]
[Kernels]
  [p0]
    type = Diffusion
    variable = p0
  []
  [s1]
    type = Diffusion
    variable = s1
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'p0 s1'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 1e-5
    m = 0.5
    sat_lr = 0.1
    log_extension = true
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = p0
    phase1_saturation = s1
    capillary_pressure = pc
  []
  [kr0]
    type = PorousFlowRelativePermeabilityVG
    phase = 0
    m = 0.5
  []
  [kr1]
    type = PorousFlowRelativePermeabilityCorey
    phase = 1
    n = 2
  []
[]
[VectorPostprocessors]
  [vpp]
    type = LineValueSampler
    variable = 's0aux s1aux p0aux p1aux'
    start_point = '0 0 0'
    end_point = '1 0 0'
    num_points = 500
    sort_by = id
  []
[]
[Executioner]
  type = Steady
  solve_type = NEWTON
  nl_abs_tol = 1e-6
[]
[BCs]
  [sleft]
    type = DirichletBC
    variable = s1
    value = 0
    boundary = left
  []
  [sright]
    type = DirichletBC
    variable = s1
    value = 1
    boundary = right
  []
[]
[Outputs]
  csv = true
  execute_on = timestep_end
[]
(modules/porous_flow/test/tests/hysteresis/2phasePS_relperm.i)
# Simple example of a 2-phase situation with hysteretic relative permeability.  Gas is added to and removed from the system in order to observe the hysteresis
# All liquid water exists in component 0
# All gas exists in component 1
[Mesh]
  [mesh]
    type = GeneratedMeshGenerator
    dim = 1
  []
[]
[GlobalParams]
  PorousFlowDictator = dictator
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    number_fluid_phases = 2
    number_fluid_components = 2
    porous_flow_vars = 'pp0 sat1'
  []
  [pc]
    type = PorousFlowCapillaryPressureVG
    alpha = 10.0
    m = 0.33
  []
[]
[Variables]
  [pp0]
  []
  [sat1]
    initial_condition = 0
  []
[]
[Kernels]
  [mass_conservation0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = pp0
  []
  [mass_conservation1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sat1
  []
[]
[DiracKernels]
  [pump]
    type = PorousFlowPointSourceFromPostprocessor
    mass_flux = flux
    point = '0.5 0 0'
    variable = sat1
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
  [sat0]
    family = MONOMIAL
    order = CONSTANT
  []
  [pp1]
    family = MONOMIAL
    order = CONSTANT
  []
  [hys_order]
    family = MONOMIAL
    order = CONSTANT
  []
  [relperm_liquid]
    family = MONOMIAL
    order = CONSTANT
  []
  [relperm_gas]
    family = MONOMIAL
    order = CONSTANT
  []
[]
[AuxKernels]
  [sat0]
    type = PorousFlowPropertyAux
    variable = sat0
    phase = 0
    property = saturation
  []
  [relperm_liquid]
    type = PorousFlowPropertyAux
    variable = relperm_liquid
    property = relperm
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowPropertyAux
    variable = relperm_gas
    property = relperm
    phase = 1
  []
  [pp1]
    type = PorousFlowPropertyAux
    variable = pp1
    phase = 1
    property = pressure
  []
  [hys_order]
    type = PorousFlowPropertyAux
    variable = hys_order
    property = hysteresis_order
  []
[]
[FluidProperties]
  [simple_fluid] # same properties used for both phases
    type = SimpleFluidProperties
    bulk_modulus = 10 # so pumping does not result in excessive porepressure
  []
[]
[Materials]
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.1
  []
  [temperature]
    type = PorousFlowTemperature
    temperature = 20
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 0
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid
    phase = 1
  []
  [pc_calculator]
    type = PorousFlow2PhasePS
    capillary_pressure = pc
    phase0_porepressure = pp0
    phase1_saturation = sat1
  []
  [hys_order_material]
    type = PorousFlowHysteresisOrder
  []
  [relperm_liquid]
    type = PorousFlowHystereticRelativePermeabilityLiquid
    phase = 0
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    liquid_modification_range = 0.9
  []
  [relperm_gas]
    type = PorousFlowHystereticRelativePermeabilityGas
    phase = 1
    S_lr = 0.1
    S_gr_max = 0.2
    m = 0.9
    gamma = 0.33
    k_rg_max = 0.8
    gas_low_extension_type = linear_like
  []
[]
[Postprocessors]
  [flux]
    type = FunctionValuePostprocessor
    function = 'if(t <= 9, 10, -10)'
  []
  [hys_order]
    type = PointValue
    point = '0 0 0'
    variable = hys_order
  []
  [sat0]
    type = PointValue
    point = '0 0 0'
    variable = sat0
  []
  [sat1]
    type = PointValue
    point = '0 0 0'
    variable = sat1
  []
  [kr_liq]
    type = PointValue
    point = '0 0 0'
    variable = relperm_liquid
  []
  [kr_gas]
    type = PointValue
    point = '0 0 0'
    variable = relperm_gas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options_iname = '-pc_type -pc_factor_shift_type'
    petsc_options_value = ' lu       NONZERO'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  dt = 0.5
  end_time = 18
  nl_abs_tol = 1E-10
[]
[Outputs]
  csv = true
[]
(modules/porous_flow/test/tests/dirackernels/theis3.i)
# Two phase Theis problem: Flow from single source
# Constant rate injection 0.5 kg/s
# 1D cylindrical mesh
[Mesh]
  type = GeneratedMesh
  dim = 1
  nx = 100
  xmax = 2000
  bias_x = 1.05
  coord_type = RZ
  rz_coord_axis = Y
[]
[GlobalParams]
  PorousFlowDictator = dictator
  gravity = '0 0 0'
[]
[Variables]
  [ppwater]
    initial_condition = 20e6
  []
  [sgas]
    initial_condition = 0
  []
[]
[AuxVariables]
  [massfrac_ph0_sp0]
    initial_condition = 1
  []
  [massfrac_ph1_sp0]
    initial_condition = 0
  []
[]
[Kernels]
  [mass0]
    type = PorousFlowMassTimeDerivative
    fluid_component = 0
    variable = ppwater
  []
  [flux0]
    type = PorousFlowAdvectiveFlux
    fluid_component = 0
    variable = ppwater
  []
  [mass1]
    type = PorousFlowMassTimeDerivative
    fluid_component = 1
    variable = sgas
  []
  [flux1]
    type = PorousFlowAdvectiveFlux
    fluid_component = 1
    variable = sgas
  []
[]
[UserObjects]
  [dictator]
    type = PorousFlowDictator
    porous_flow_vars = 'ppwater sgas'
    number_fluid_phases = 2
    number_fluid_components = 2
  []
  [pc]
    type = PorousFlowCapillaryPressureConst
    pc = 1e5
  []
[]
[FluidProperties]
  [simple_fluid0]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 1000
    viscosity = 1e-3
    thermal_expansion = 0
  []
  [simple_fluid1]
    type = SimpleFluidProperties
    bulk_modulus = 2e9
    density0 = 10
    viscosity = 1e-4
    thermal_expansion = 0
  []
[]
[Materials]
  [temperature]
    type = PorousFlowTemperature
  []
  [ppss]
    type = PorousFlow2PhasePS
    phase0_porepressure = ppwater
    phase1_saturation = sgas
    capillary_pressure = pc
  []
  [massfrac]
    type = PorousFlowMassFraction
    mass_fraction_vars = 'massfrac_ph0_sp0 massfrac_ph1_sp0'
  []
  [simple_fluid0]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid0
    phase = 0
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [simple_fluid1]
    type = PorousFlowSingleComponentFluid
    fp = simple_fluid1
    phase = 1
    compute_enthalpy = false
    compute_internal_energy = false
  []
  [porosity]
    type = PorousFlowPorosityConst
    porosity = 0.2
  []
  [permeability]
    type = PorousFlowPermeabilityConst
    permeability = '1e-12 0 0 0 1e-12 0 0 0 1e-12'
  []
  [relperm_water]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 0
  []
  [relperm_gas]
    type = PorousFlowRelativePermeabilityCorey
    n = 1
    phase = 1
  []
[]
[BCs]
  [rightwater]
    type = DirichletBC
    boundary = right
    value = 20e6
    variable = ppwater
  []
[]
[DiracKernels]
  [source]
    type = PorousFlowSquarePulsePointSource
    point = '0 0 0'
    mass_flux = 0.5
    variable = sgas
  []
[]
[Preconditioning]
  [smp]
    type = SMP
    full = true
    petsc_options = '-snes_converged_reason -ksp_diagonal_scale -ksp_diagonal_scale_fix -ksp_gmres_modifiedgramschmidt -snes_linesearch_monitor'
    petsc_options_iname = '-ksp_type -pc_type -sub_pc_type -sub_pc_factor_shift_type -pc_asm_overlap -snes_atol -snes_rtol -snes_max_it'
    petsc_options_value = 'gmres      asm      lu           NONZERO                   2               1E-8       1E-10 20'
  []
[]
[Executioner]
  type = Transient
  solve_type = Newton
  end_time = 1e4
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 10
    growth_factor = 2
  []
[]
[VectorPostprocessors]
  [line]
    type = NodalValueSampler
    sort_by = x
    variable = 'ppwater sgas'
    execute_on = 'timestep_end'
  []
[]
[Postprocessors]
  [ppwater]
    type = PointValue
    point = '4 0 0'
    variable = ppwater
  []
  [sgas]
    type = PointValue
    point = '4 0 0'
    variable = sgas
  []
  [massgas]
    type = PorousFlowFluidMass
    fluid_component = 1
  []
[]
[Outputs]
  file_base = theis3
  print_linear_residuals = false
  perf_graph = true
  [csv]
    type = CSV
    execute_on = timestep_end
    execute_vector_postprocessors_on = final
  []
[]