- A_refReference area [m^2]
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Reference area [m^2]
 - connectionsJunction connections
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Junction connections
 - headPump head [m]
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Pump head [m]
 - positionSpatial position of the center of the junction [m]
C++ Type:libMesh::Point
Controllable:No
Description:Spatial position of the center of the junction [m]
 - volumeVolume of the junction [m^3]
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Volume of the junction [m^3]
 
Pump1Phase
Pump between two 1-phase flow channels that has a non-zero volume
This component implements a pump model for 1-phase flow that has a volume, which is directly supplied by the user. This component is heavily based off of VolumeJunction1Phase. The main difference is that there is only one momentum conservation equation (the ones for rhovV and rhowV were removed) since the pump inlet and outlet are aligned in the rhouV direction. Also there are new pump head terms added to the momentum and energy equations.
Input Parameters
- K0Form loss factor [-]
Default:0
C++ Type:double
Unit:(no unit assumed)
Controllable:Yes
Description:Form loss factor [-]
 - apply_velocity_scalingFalseSet to true to apply the scaling to the normal velocity. See documentation for more information.
Default:False
C++ Type:bool
Controllable:No
Description:Set to true to apply the scaling to the normal velocity. See documentation for more information.
 - initial_TInitial temperature [K]
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Initial temperature [K]
 - initial_pInitial pressure [Pa]
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Initial pressure [Pa]
 - initial_vel_xInitial velocity in x-direction [m/s]
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Initial velocity in x-direction [m/s]
 - initial_vel_yInitial velocity in y-direction [m/s]
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Initial velocity in y-direction [m/s]
 - initial_vel_zInitial velocity in z-direction [m/s]
C++ Type:FunctionName
Unit:(no unit assumed)
Controllable:No
Description:Initial velocity in z-direction [m/s]
 - scaling_factor_rhoEV1Scaling factor for rho*E*V [-]
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor for rho*E*V [-]
 - scaling_factor_rhoV1Scaling factor for rho*V [-]
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor for rho*V [-]
 - scaling_factor_rhouV1Scaling factor for rho*u*V [-]
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor for rho*u*V [-]
 - scaling_factor_rhovV1Scaling factor for rho*v*V [-]
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor for rho*v*V [-]
 - scaling_factor_rhowV1Scaling factor for rho*w*V [-]
Default:1
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Scaling factor for rho*w*V [-]
 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:No
Description:Set the enabled status of the MooseObject.
 
Advanced Parameters
Input Files
- (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_loop.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
 - (modules/thermal_hydraulics/test/tests/components/pump_1phase/clg.head.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
 - (modules/thermal_hydraulics/test/tests/components/pump_1phase/pipe_friction_pump_head_balance.i)
 - (modules/combined/test/tests/subchannel_thm_coupling/THM_SCM_coupling_pump.i)
 - (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_mass_energy_conservation.i)
 - (modules/thermal_hydraulics/test/tests/components/pump_1phase/jacobian.i)
 - (modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
 - (modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_pressure_check.i)
 
References
No citations exist within this document.(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_loop.i)
[GlobalParams]
  initial_T = 300
  initial_p = 1e5
  initial_vel = 0
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  scaling_factor_1phase = '1 1 1'
  scaling_factor_rhoV  = 1
  scaling_factor_rhouV = 1
  scaling_factor_rhovV = 1
  scaling_factor_rhowV = 1
  scaling_factor_rhoEV = 1
  closures = simple_closures
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [pipe1a]
    type = FlowChannel1Phase
    fp = fp
    position = '0 0 0'
    orientation = '1 0 0'
    A = 0.785398163e-4    #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
    D_h = 0.01
    f = 0.01
    length = 0.5
    n_elems = 2
  []
  [pipe1b]
    type = FlowChannel1Phase
    fp = fp
    position = '0.5 0 0'
    orientation = '1 0 0'
    A = 0.785398163e-4    #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
    D_h = 0.01
    f = 0.01
    length = 0.5
    n_elems = 2
  []
  [pipe2]
    type = FlowChannel1Phase
    fp = fp
    position = '1 0 0'
    orientation = '0 1 0'
    A = 0.785398163e-4    #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
    D_h = 0.01
    f = 0.01
    length = 1
    n_elems = 3
  []
  [pipe3]
    type = FlowChannel1Phase
    fp = fp
    position = '1 1 0'
    orientation = '-1 0 0'
    A = 0.785398163e-4    #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
    D_h = 0.01
    f = 0.01
    length = 1
    n_elems = 3
  []
  [pipe4]
    type = FlowChannel1Phase
    fp = fp
    position = '0 1 0'
    orientation = '0 -1 0'
    A = 0.785398163e-4    #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
    D_h = 0.01
    f = 0.01
    length = 1
    n_elems = 3
  []
  [pipe5]
    type = FlowChannel1Phase
    fp = fp
    position = '1 1 0'
    orientation = '0 1 0'
    A = 0.785398163e-4    #1.0 cm (0.01 m) in diameter, A = 1/4 * PI * d^2
    D_h = 0.01
    f = 0.01
    length = 0.5
    n_elems = 3
  []
  [pump]
    type = Pump1Phase
    connections = 'pipe1a:out pipe1b:in'
    head = 1.0
    position = '0.5 0 0'
    volume = 0.785398163e-3
    A_ref = 0.785398163e-4
  []
  [junction1]
    type = VolumeJunction1Phase
    connections = 'pipe1b:out pipe2:in'
    volume = 0.785398163e-3
    position = '1 0 0'
  []
  [junction2]
    type = VolumeJunction1Phase
    connections = 'pipe2:out pipe3:in pipe5:in'
    volume = 0.785398163e-3
    position = '1 1 0'
  []
  [junction3]
    type = VolumeJunction1Phase
    connections = 'pipe3:out pipe4:in'
    volume = 0.785398163e-3
    position = '0 1 0'
  []
  [junction4]
    type = VolumeJunction1Phase
    connections = 'pipe4:out pipe1a:in'
    volume = 0.785398163e-3
    position = '0 0 0'
  []
  [outlet]
    type = InletStagnationPressureTemperature1Phase
    input = 'pipe5:out'
    p0 = 1.e5
    T0 = 300
  []
[]
[Preconditioning]
  [SMP_PJFNK]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'bdf2'
  start_time = 0
  num_steps = 10
  dt = 1
  abort_on_solve_fail = true
  solve_type = 'PJFNK'
  line_search = 'basic'
  nl_rel_tol = 1e-6
  nl_abs_tol = 1e-7
  nl_max_its = 10
  l_tol = 1e-3
  l_max_its = 100
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  [Quadrature]
    type = gauss
    order = second
  []
[]
[Outputs]
  [out]
    type = Exodus
    show = 'rhouA p'
    execute_on = 'initial final'
  []
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/04_loop.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
tot_power = 2000 # W
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = simple_closures
  fp = he
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseTHM
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = '${A_core}'
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 2'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '0 0 1'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = ${T_in}
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_1:out cooling_pipe:in'
  []
  [cooling_pipe]
    type = FlowChannel1Phase
    position = '1 0 1.75'
    orientation = '0 0 -1'
    length = 1.5
    n_elems = 25
    A = ${A_pipe}
  []
  [cold_wall]
    type = HeatTransferFromSpecifiedTemperature1Phase
    flow_channel = cooling_pipe
    T_wall = 300
    P_hf = '${fparse pi * pipe_dia}'
  []
  [jct7]
    type = JunctionOneToOne1Phase
    connections = 'cooling_pipe:out down_pipe_2:in'
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 0'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 0
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct10]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
[]
[ControlLogic]
  [set_point]
    type = GetFunctionValueControl
    function = ${m_dot_in}
  []
  [pid]
    type = PIDControl
    initial_value = 0
    set_point = set_point:value
    input = m_dot_pump
    K_p = 1.
    K_i = 4.
    K_d = 0
  []
  [set_pump_head]
    type = SetComponentRealValueControl
    component = pump
    parameter = head
    value = pid:output
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [m_dot_pump]
    type = ADFlowJunctionFlux1Phase
    boundary = core_chan:in
    connection_index = 1
    equation = mass
    junction = jct7
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = cooling_pipe:out
    variable = T
  []
  [pump_head]
    type = RealComponentParameterValuePostprocessor
    component = pump
    parameter = head
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  dtmax = 5
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 0
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/clg.head.i)
[GlobalParams]
  initial_T = 393.15
  initial_vel = 0.0372
  f = 0
  fp = fp
  scaling_factor_1phase = '1e-2 1e-2 1e-5'
  closures = simple_closures
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Functions]
  [pump_head_fn]
    type = PiecewiseLinear
    x = '0  0.5'
    y = '0  1  '
  []
[]
[Components]
  [inlet]
    type = InletMassFlowRateTemperature1Phase
    input = 'pipe1:in'
    m_dot = 20
    T = 393.15
  []
  [pipe1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '1 0 0'
    length = 1
    n_elems = 10
    A = 0.567
    initial_p = 1.318964e+07
  []
  [pump]
    type = Pump1Phase
    connections = 'pipe1:out pipe2:in'
    position = '1.02 0 0'
    head = 0
    volume = 0.567
    A_ref = 0.567
    initial_p = 1.318964e+07
    initial_vel_x = 0.0372
    initial_vel_y = 0
    initial_vel_z = 0
    scaling_factor_rhoV  = 1
    scaling_factor_rhouV = 1
    scaling_factor_rhoEV = 1e-5
  []
  [pipe2]
    type = FlowChannel1Phase
    position = '1.04 0 0'
    orientation = '1 0 0'
    length = 0.96
    n_elems = 10
    A = 0.567
    initial_p = 1.4072e+07
  []
  [outlet]
    type = Outlet1Phase
    input = 'pipe2:out'
    p = 1.4072e+07
  []
[]
[ControlLogic]
  [pump_head_ctrl]
    type = TimeFunctionComponentControl
    component = pump
    parameter = head
    function = pump_head_fn
  []
[]
[Postprocessors]
  [pump_head]
    type = RealComponentParameterValuePostprocessor
    component = pump
    parameter = head
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'bdf2'
  start_time = 0
  dt = 0.1
  num_steps = 10
  abort_on_solve_fail = true
  solve_type = 'PJFNK'
  line_search = 'basic'
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-6
  nl_max_its = 15
  l_tol = 1e-4
  l_max_its = 10
  [Quadrature]
    type = GAUSS
    order = SECOND
  []
[]
[Outputs]
  [out]
    type = CSV
    show = 'pump_head'
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/05_secondary_side.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = thm_closures
  fp = he
[]
[Functions]
  [m_dot_sec_fn]
    type = PiecewiseLinear
    xy_data = '
      0    0
      10 ${m_dot_sec_in}'
  []
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
  [water]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = ${A_core}
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 2'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '0 1 0'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = ${T_in}
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionParallelChannels1Phase
    position = '1 0 1.75'
    connections = 'down_pipe_1:out hx/pri:in'
    volume = 1e-5
  []
  [hx]
    [pri]
      type = FlowChannel1Phase
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      roughness = 1e-5
      A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
      D_h = ${hx_dia_inner}
    []
    [ht_pri]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = inner
      flow_channel = hx/pri
      P_hf = '${fparse pi * hx_dia_inner}'
    []
    [wall]
      type = HeatStructureCylindrical
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      widths = '${hx_wall_thickness}'
      n_part_elems = '3'
      solid_properties = 'steel'
      solid_properties_T_ref = '300'
      names = '0'
      inner_radius = '${fparse hx_dia_inner / 2.}'
    []
    [ht_sec]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = outer
      flow_channel = hx/sec
      P_hf = '${fparse 2 * pi * hx_radius_wall}'
    []
    [sec]
      type = FlowChannel1Phase
      position = '${fparse 1 + hx_wall_thickness} 0 0.25'
      orientation = '0 0 1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
      D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
      fp = water
      initial_T = 300
    []
  []
  [jct7]
    type = JunctionParallelChannels1Phase
    position = '1 0 0.5'
    connections = 'hx/pri:out down_pipe_2:in'
    volume = 1e-5
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 0'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 0
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct9]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
  [inlet_sec]
    type = InletMassFlowRateTemperature1Phase
    input = 'hx/sec:in'
    m_dot = 0
    T = 300
  []
  [outlet_sec]
    type = Outlet1Phase
    input = 'hx/sec:out'
    p = 1e5
  []
[]
[ControlLogic]
  [set_point]
    type = GetFunctionValueControl
    function = ${m_dot_in}
  []
  [pid]
    type = PIDControl
    initial_value = 0.0
    set_point = set_point:value
    input = m_dot_pump
    K_p = 1.
    K_i = 4.
    K_d = 0
  []
  [set_pump_head]
    type = SetComponentRealValueControl
    component = pump
    parameter = head
    value = pid:output
  []
  [m_dot_sec_inlet_ctrl]
    type = GetFunctionValueControl
    function = m_dot_sec_fn
  []
  [set_m_dot_sec_ctrl]
    type = SetComponentRealValueControl
    component = inlet_sec
    parameter = m_dot
    value = m_dot_sec_inlet_ctrl:value
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [m_dot_pump]
    type = ADFlowJunctionFlux1Phase
    boundary = core_chan:in
    connection_index = 1
    equation = mass
    junction = jct7
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = hx/pri:out
    variable = T
  []
  [hx_sec_T_in]
    type = SideAverageValue
    boundary = inlet_sec
    variable = T
  []
  [hx_sec_T_out]
    type = SideAverageValue
    boundary = outlet_sec
    variable = T
  []
  [m_dot_sec]
    type = ADFlowBoundaryFlux1Phase
    boundary = inlet_sec
    equation = mass
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  dtmax = 5
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 0
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pipe_friction_pump_head_balance.i)
# This test balances the pipe friction pressure drop with the pump head pressure rise and runs to steady state.
[GlobalParams]
  initial_T = 393.15
  initial_vel = 0.0
  A = 0.567
  fp = fp
  scaling_factor_1phase = '0.04 0.04 0.04e-5'
  closures = simple_closures
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [pipe1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '1 0 0'
    length = 10
    initial_p = 1.35e+07
    n_elems = 20
    f = 5000
    gravity_vector = '0 0 0'
  []
  [pump]
    type = Pump1Phase
    connections = 'pipe1:out pipe1:in'
    position = '1.02 0 0'
    initial_p = 1.3e+07
    initial_vel_x = 1
    initial_vel_y = 0
    initial_vel_z = 0
    scaling_factor_rhoV  = 1
    scaling_factor_rhouV = 1
    scaling_factor_rhoEV = 1e-5
    head = 8
    volume = 0.567
    A_ref = 0.567
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'bdf2'
  start_time = 0
  dt = 1.e-3
  num_steps = 38
  abort_on_solve_fail = true
  solve_type = 'PJFNK'
  line_search = 'basic'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-6
  nl_max_its = 15
  l_tol = 1e-4
  l_max_its = 10
  [Quadrature]
    type = GAUSS
    order = SECOND
  []
[]
[Outputs]
  [out_x]
    type = Exodus
    show = 'p T vel'
  []
  velocity_as_vector = false
[]
(modules/combined/test/tests/subchannel_thm_coupling/THM_SCM_coupling_pump.i)
# THM file based on https://mooseframework.inl.gov/modules/thermal_hydraulics/tutorials/single_phase_flow/step05.html
# Used to loosely couple THM with SCM
# This is a simple closed loop with a pump providing pressure head, core, pressurizer and HX.
# THM sends massflux and temperature at the inlet of the core, and pressure at the outlet of the core
# to subchannel. Subchannel returns total pressure drop of the assembly and total power to THM and THM calculates an
# average friction factor for the core region.
T_in = 583.0 # K
press = 2e5 # Pa
SC_core = 0.0004980799633447909 #m2
# core parameters
core_length = 1. # m
core_n_elems = 1
A_core = 0.005 #dummy
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = thm_closures
  fp = sodium_eos
[]
[Functions]
  [q_wall_fn]
    type = ParsedFunction
    symbol_names = 'core_power length'
    symbol_values = 'core_power  ${core_length}'
    expression = 'core_power/length'
  []
[]
[FluidProperties]
  [water]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
  [sodium_eos]
    type = StiffenedGasFluidProperties
    gamma = 1.24
    cv = 1052.8
    q = -2.6292e+05
    p_inf = 1.1564e+08
    q_prime = 0
    mu = 3.222e-04
    k = 73.82
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
  [none_closures]
    type = Closures1PhaseNone
  []
[]
[Materials]
  [f_mat]
    type = ADParsedMaterial
    property_name = f_D
    postprocessor_names = 'core_f'
    expression = 'core_f'
    block = 'core_chan'
  []
[]
[HeatStructureMaterials]
  [steel]
    type = SolidMaterialProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 -0.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    A = ${A_core}
    closures = none_closures
  []
  [core_ht]
    type = HeatTransferFromHeatFlux1Phase
    flow_channel = core_chan
    q_wall = q_wall_fn
    P_hf = 1
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 1.5'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 1.5'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 1.5'
    orientation = '0 1 0'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = 580
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 1.5'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionParallelChannels1Phase
    position = '1 0 1.25'
    connections = 'down_pipe_1:out hx/pri:in'
    volume = 1e-5
  []
  [hx]
    [pri]
      type = FlowChannel1Phase
      position = '1 0 1.25'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      roughness = 1e-5
      A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
      D_h = ${hx_dia_inner}
    []
    [ht_pri]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = inner
      flow_channel = hx/pri
      P_hf = '${fparse pi * hx_dia_inner}'
    []
    [wall]
      type = HeatStructureCylindrical
      position = '1 0 1.25'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      widths = '${hx_wall_thickness}'
      n_part_elems = '3'
      materials = 'steel'
      names = '0'
      inner_radius = '${fparse hx_dia_inner / 2.}'
    []
    [ht_sec]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = outer
      flow_channel = hx/sec
      P_hf = '${fparse 2 * pi * hx_radius_wall}'
    []
    [sec]
      type = FlowChannel1Phase
      position = '${fparse 1 + hx_wall_thickness} 0 -0.25'
      orientation = '0 0 1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
      D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
      fp = water
      initial_T = 300
    []
  []
  [jct7]
    type = JunctionParallelChannels1Phase
    position = '1 0 -0.25'
    connections = 'hx/pri:out down_pipe_2:in'
    volume = 1e-5
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 -0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 -0.5'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 -0.5'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 3.56
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 -0.5'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct9]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
  [inlet_sec]
    type = InletMassFlowRateTemperature1Phase
    input = 'hx/sec:in'
    m_dot = ${m_dot_sec_in}
    T = 300
  []
  [outlet_sec]
    type = Outlet1Phase
    input = 'hx/sec:out'
    p = 1e5
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateDirectFlowChannel
    q_wall_prop = q_wall
    block = core_chan
    P_hf = 1
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [T_out]
    type = SideAverageValue
    boundary = bottom_1:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = up_pipe_1:out
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = up_pipe_2:in
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = hx/pri:out
    variable = T
  []
  [hx_sec_T_in]
    type = SideAverageValue
    boundary = inlet_sec
    variable = T
  []
  [hx_sec_T_out]
    type = SideAverageValue
    boundary = outlet_sec
    variable = T
  []
  [m_dot_sec]
    type = ADFlowBoundaryFlux1Phase
    boundary = inlet_sec
    equation = mass
  []
  ############## Friction Factor Calculation #############
  [av_rhouA]
    type = ElementAverageValue
    variable = 'rhouA'
    block = 'core_chan'
  []
  [av_rho]
    type = ElementAverageValue
    variable = 'rho'
    block = 'core_chan'
  []
  [Kloss]
    type = ParsedPostprocessor
    pp_names = 'core_delta_p_tgt av_rhouA av_rho'
    expression = '2.0 * core_delta_p_tgt * av_rho * ${A_core} * ${A_core} / (av_rhouA * av_rhouA)'
  []
  [Dh]
    type = ADElementAverageMaterialProperty
    mat_prop = D_h
    block = core_chan
  []
  [core_f]
    type = ParsedPostprocessor
    pp_names = 'Kloss Dh'
    expression = 'Kloss * Dh / ${core_length}'
  []
  ### INFO to send to SC
  [outlet_pressure]
    type = SideAverageValue
    boundary = up_pipe_2:in
    variable = p
  []
  [inlet_mass_flow_rate]
    type = ADFlowJunctionFlux1Phase
    boundary = up_pipe_1:out
    connection_index = 0
    equation = mass
    junction = jct1
  []
  [inlet_temperature]
    type = SideAverageValue
    boundary = up_pipe_1:out
    variable = T
  []
  [inlet_mass_flux]
    type = ParsedPostprocessor
    pp_names = 'inlet_mass_flow_rate'
    expression = 'abs(inlet_mass_flow_rate/${SC_core})'
  []
  #####
  ##### Info received from subchannel
  [core_delta_p_tgt]
    type = Receiver
    default = 100
  []
  [core_power]
    type = Receiver
    default = 100
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 2
  []
  dtmax = 50
  end_time = 10
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 1e-7
  nl_abs_tol = 1e-7
  nl_max_its = 25
  fixed_point_min_its = 1
  fixed_point_max_its = 5
  accept_on_max_fixed_point_iteration = true
  auto_advance = true
  relaxation_factor = 0.5
[]
[Outputs]
  csv = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
################################################################################
# A multiapp that couples THM to subchannel
################################################################################
[MultiApps]
  # active = ''
  [subchannel]
    type = FullSolveMultiApp
    input_files = 'subchannel.i'
    execute_on = 'timestep_end'
    positions = '0 0 0'
    max_procs_per_app = 1
    output_in_position = true
    bounding_box_padding = '0 0 0.1'
  []
[]
[Transfers]
  # active = ''
  [pressure_drop_transfer] # Get pressure drop to THM from subchannel
    type = MultiAppPostprocessorTransfer
    from_multi_app = subchannel
    from_postprocessor = total_pressure_drop_SC
    to_postprocessor = core_delta_p_tgt
    reduction_type = average
    execute_on = 'timestep_end'
  []
  [power_transfer] # Get Total power to THM from subchannel
    type = MultiAppPostprocessorTransfer
    from_multi_app = subchannel
    from_postprocessor = Total_power
    to_postprocessor = core_power
    reduction_type = average
    execute_on = 'timestep_end'
  []
  [mass_flux_tranfer] # Send mass_flux at the inlet of THM core to subchannel
    type = MultiAppPostprocessorTransfer
    to_multi_app = subchannel
    from_postprocessor = inlet_mass_flux
    to_postprocessor = report_mass_flux_inlet
    execute_on = 'timestep_end'
  []
  [outlet_pressure_tranfer] # Send pressure at the outlet of THM core to subchannel
    type = MultiAppPostprocessorTransfer
    to_multi_app = subchannel
    from_postprocessor = outlet_pressure
    to_postprocessor = report_pressure_outlet
    execute_on = 'timestep_end'
  []
  [inlet_temperature_transfer]
    type = MultiAppPostprocessorTransfer
    to_multi_app = subchannel
    from_postprocessor = inlet_temperature
    to_postprocessor = report_temperature_inlet
    execute_on = 'timestep_end'
  []
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_mass_energy_conservation.i)
# This test tests that mass and energy are conserved.
dt = 1.e-2
head = 95.
volume = 1.
A = 1.
g = 9.81
[GlobalParams]
  initial_T = 393.15
  initial_vel = 0
  f = 0
  fp = fp
  scaling_factor_1phase = '0.04 0.04 0.04e-5'
  closures = simple_closures
  A = ${A}
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [wall_in]
    type = SolidWall1Phase
    input = 'pipe1:in'
  []
  [pipe1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '1 0 0'
    length = 1
    initial_p = 1.7E+07
    n_elems = 10
    gravity_vector = '0 0 0'
  []
  [pump]
    type = Pump1Phase
    connections = 'pipe1:out pipe2:in'
    position = '1.02 0 0'
    initial_p = 1.3e+07
    scaling_factor_rhoEV = 1e-5
    head = ${head}
    A_ref = ${A}
    volume = ${volume}
    initial_vel_x = 0
    initial_vel_y = 0
    initial_vel_z = 0
  []
  [pipe2]
    type = FlowChannel1Phase
    position = '1.04 0 0'
    orientation = '1 0 0'
    length = 1
    initial_p = 1.3e+07
    n_elems = 10
    gravity_vector = '0 0 0'
  []
  [wall_out]
    type = SolidWall1Phase
    input = 'pipe2:out'
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'implicit-euler'
  start_time = 0
  dt = ${dt}
  num_steps = 6
  abort_on_solve_fail = true
  solve_type = 'PJFNK'
  line_search = 'basic'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-6
  nl_max_its = 15
  l_tol = 1e-4
  l_max_its = 10
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  [Quadrature]
    type = GAUSS
    order = SECOND
  []
[]
[Postprocessors]
  # mass conservation
  [mass_pipes]
    type = ElementIntegralVariablePostprocessor
    variable = rhoA
    block = 'pipe1 pipe2'
    execute_on = 'initial timestep_end'
  []
  [mass_pump]
    type = ElementAverageValue
    variable = rhoV
    block = 'pump'
    execute_on = 'initial timestep_end'
  []
  [mass_tot]
    type = SumPostprocessor
    values = 'mass_pipes mass_pump'
    execute_on = 'initial timestep_end'
  []
  [mass_tot_change]
    type = ChangeOverTimePostprocessor
    postprocessor = mass_tot
    change_with_respect_to_initial = true
    compute_relative_change = true
    execute_on = 'initial timestep_end'
  []
  # energy conservation
  [E_pipes]
    type = ElementIntegralVariablePostprocessor
    variable = rhoEA
    block = 'pipe1 pipe2'
    execute_on = 'initial timestep_end'
  []
  [E_pump]
    type = ElementAverageValue
    variable = rhoEV
    block = 'pump'
    execute_on = 'initial timestep_end'
  []
  [E_tot]
    type = LinearCombinationPostprocessor
    pp_coefs = '1 1'
    pp_names = 'E_pipes E_pump'
    execute_on = 'initial timestep_end'
  []
  [S_energy]
    type = FunctionValuePostprocessor
    function = S_energy_fcn
    indirect_dependencies = 'pump_rhouV'
    execute_on = 'initial timestep_end'
  []
  [E_change]
    type = ChangeOverTimePostprocessor
    postprocessor = E_tot
    execute_on = 'initial timestep_end'
  []
  # this should also execute on initial, this value is
  # lagged by one timestep as a workaround to moose issue #13262
  [E_conservation]
    type = FunctionValuePostprocessor
    function = E_conservation_fcn
    execute_on = 'timestep_end'
  []
  [pump_rhouV]
    type = ElementAverageValue
    variable = rhouV
    block = 'pump'
    execute_on = 'initial timestep_end'
  []
[]
[Functions]
  [S_energy_fcn]
    type = ParsedFunction
    expression = 'rhouV * g * head * A / volume'
    symbol_names = 'rhouV g head A volume'
    symbol_values = 'pump_rhouV ${g} ${head} ${A} ${volume}'
  []
  [E_conservation_fcn]
    type = ParsedFunction
    expression = '(E_change - S_energy * dt) / E_tot'
    symbol_names = 'E_change S_energy dt E_tot'
    symbol_values = 'E_change S_energy ${dt} E_tot'
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = 'FINAL'
    show = 'mass_tot_change E_conservation'
  []
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/jacobian.i)
[GlobalParams]
  initial_T = 393.15
  initial_vel = 0
  initial_p = 17e+06
  f = 0
  fp = fp
  closures = simple_closures
  A = 1
  gravity_vector = '0 0 0'
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Components]
  [pipe1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '1 0 0'
    length = 1
    n_elems = 2
    gravity_vector = '0 0 0'
  []
  [pump]
    type = Pump1Phase
    connections = 'pipe1:out pipe2:in'
    position = '1.02 0 0'
    head = 95
    A_ref = 1
    volume = 1
    initial_vel_x = 0
    initial_vel_y = 0
    initial_vel_z = 0
  []
  [pipe2]
    type = FlowChannel1Phase
    position = '1.04 0 0'
    orientation = '1 0 0'
    length = 1
    n_elems = 2
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'bdf2'
  start_time = 0
  dt = 1e-2
  num_steps = 1
  abort_on_solve_fail = true
  solve_type = 'NEWTON'
  line_search = 'basic'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-6
  nl_max_its = 15
  l_tol = 1e-4
  l_max_its = 10
  petsc_options_iname = '-snes_test_err'
  petsc_options_value = '1e-9'
  [Quadrature]
    type = GAUSS
    order = SECOND
  []
[]
(modules/thermal_hydraulics/tutorials/single_phase_flow/06_custom_closures.i)
T_in = 300. # K
m_dot_in = 1e-2 # kg/s
press = 10e5 # Pa
# core parameters
core_length = 1. # m
core_n_elems = 25
core_dia = '${units 2. cm -> m}'
core_pitch = '${units 8.7 cm -> m}'
A_core = '${fparse core_pitch^2 - 0.25 *pi * core_dia^2}'
P_wet_core = '${fparse 4*core_pitch + pi * core_dia}'
Dh_core = '${fparse 4 * A_core / P_wet_core}'
# pipe parameters
pipe_dia = '${units 10. cm -> m}'
A_pipe = '${fparse 0.25 * pi * pipe_dia^2}'
tot_power = 2000 # W
# heat exchanger parameters
hx_dia_inner = '${units 12. cm -> m}'
hx_wall_thickness = '${units 5. mm -> m}'
hx_dia_outer = '${units 50. cm -> m}'
hx_radius_wall = '${fparse hx_dia_inner / 2. + hx_wall_thickness}'
hx_length = 1.5 # m
hx_n_elems = 25
m_dot_sec_in = 1. # kg/s
[GlobalParams]
  initial_p = ${press}
  initial_vel = 0.0001
  initial_T = ${T_in}
  initial_vel_x = 0
  initial_vel_y = 0
  initial_vel_z = 0
  gravity_vector = '0 0 0'
  rdg_slope_reconstruction = minmod
  scaling_factor_1phase = '1 1e-2 1e-4'
  scaling_factor_rhoV = 1
  scaling_factor_rhouV = 1e-2
  scaling_factor_rhovV = 1e-2
  scaling_factor_rhowV = 1e-2
  scaling_factor_rhoEV = 1e-4
  closures = thm_closures
  fp = he
[]
[Functions]
  [m_dot_sec_fn]
    type = PiecewiseLinear
    xy_data = '
      0    0
      10 ${m_dot_sec_in}'
  []
[]
[FluidProperties]
  [he]
    type = IdealGasFluidProperties
    molar_mass = 4e-3
    gamma = 1.67
    k = 0.2556
    mu = 3.22639e-5
  []
  [water]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    cv = 1816.0
    q = -1.167e6
    p_inf = 1.0e9
    q_prime = 0
  []
[]
[Closures]
  [thm_closures]
    type = Closures1PhaseTHM
  []
[]
[Materials]
  [Re_mat]
    type = ADReynoldsNumberMaterial
    Re = Re
    rho = rho
    vel = vel
    D_h = D_h
    mu = mu
    block = hx/pri
  []
  [f_mat]
    type = ADParsedMaterial
    property_name = f_D
    constant_names = 'a b c'
    constant_expressions = '1 0.1 -0.5'
    material_property_names = 'Re'
    expression = 'a + b * Re^c'
    block = hx/pri
  []
  [Pr_mat]
    type = ADPrandtlNumberMaterial
    Pr = Pr
    cp = cp
    mu = mu
    k = k
    block = hx/pri
  []
  [Nu_mat]
    type = ADParsedMaterial
    property_name = 'Nu'
    constant_names = 'a b c'
    constant_expressions = '0.03 0.9 0.5'
    material_property_names = 'Re Pr'
    expression = 'a * Re ^b * Pr^c'
    block = hx/pri
  []
  [Hw_mat]
    type = ADConvectiveHeatTransferCoefficientMaterial
    D_h = D_h
    k = k
    Nu = Nu
    Hw = Hw
    block = hx/pri
  []
[]
[SolidProperties]
  [steel]
    type = ThermalFunctionSolidProperties
    rho = 8050
    k = 45
    cp = 466
  []
[]
[Components]
  [total_power]
    type = TotalPower
    power = ${tot_power}
  []
  [up_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 15
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct1]
    type = JunctionParallelChannels1Phase
    position = '0 0 0.5'
    connections = 'up_pipe_1:out core_chan:in'
    volume = 1e-5
  []
  [core_chan]
    type = FlowChannel1Phase
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    roughness = .0001
    A = ${A_core}
    D_h = ${Dh_core}
  []
  [core_hs]
    type = HeatStructureCylindrical
    position = '0 0 0.5'
    orientation = '0 0 1'
    length = ${core_length}
    n_elems = ${core_n_elems}
    names = 'block'
    widths = '${fparse core_dia / 2.}'
    solid_properties = 'steel'
    solid_properties_T_ref = '300'
    n_part_elems = 3
  []
  [core_heating]
    type = HeatSourceFromTotalPower
    hs = core_hs
    regions = block
    power = total_power
  []
  [core_ht]
    type = HeatTransferFromHeatStructure1Phase
    flow_channel = core_chan
    hs = core_hs
    hs_side = outer
    P_hf = '${fparse pi * core_dia}'
  []
  [jct2]
    type = JunctionParallelChannels1Phase
    position = '0 0 1.5'
    connections = 'core_chan:out up_pipe_2:in'
    volume = 1e-5
  []
  [up_pipe_2]
    type = FlowChannel1Phase
    position = '0 0 1.5'
    orientation = '0 0 1'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct3]
    type = JunctionOneToOne1Phase
    connections = 'up_pipe_2:out top_pipe_1:in'
  []
  [top_pipe_1]
    type = FlowChannel1Phase
    position = '0 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [top_pipe_2]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '1 0 0'
    length = 0.5
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct4]
    type = VolumeJunction1Phase
    position = '0.5 0 2'
    volume = 1e-5
    connections = 'top_pipe_1:out top_pipe_2:in press_pipe:in'
  []
  [press_pipe]
    type = FlowChannel1Phase
    position = '0.5 0 2'
    orientation = '0 1 0'
    length = 0.2
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pressurizer]
    type = InletStagnationPressureTemperature1Phase
    p0 = ${press}
    T0 = ${T_in}
    input = press_pipe:out
  []
  [jct5]
    type = JunctionOneToOne1Phase
    connections = 'top_pipe_2:out down_pipe_1:in'
  []
  [down_pipe_1]
    type = FlowChannel1Phase
    position = '1 0 2'
    orientation = '0 0 -1'
    length = 0.25
    A = ${A_pipe}
    n_elems = 5
  []
  [jct6]
    type = JunctionParallelChannels1Phase
    position = '1 0 1.75'
    connections = 'down_pipe_1:out hx/pri:in'
    volume = 1e-5
  []
  [hx]
    [pri]
      type = FlowChannel1Phase
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      roughness = 1e-5
      A = '${fparse pi * hx_dia_inner * hx_dia_inner / 4.}'
      D_h = ${hx_dia_inner}
      closures = ''
    []
    [ht_pri]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = inner
      flow_channel = hx/pri
      P_hf = '${fparse pi * hx_dia_inner}'
    []
    [wall]
      type = HeatStructureCylindrical
      position = '1 0 1.75'
      orientation = '0 0 -1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      widths = '${hx_wall_thickness}'
      n_part_elems = '3'
      solid_properties = 'steel'
      solid_properties_T_ref = '300'
      names = '0'
      inner_radius = '${fparse hx_dia_inner / 2.}'
    []
    [ht_sec]
      type = HeatTransferFromHeatStructure1Phase
      hs = hx/wall
      hs_side = outer
      flow_channel = hx/sec
      P_hf = '${fparse 2 * pi * hx_radius_wall}'
    []
    [sec]
      type = FlowChannel1Phase
      position = '${fparse 1 + hx_wall_thickness} 0 0.25'
      orientation = '0 0 1'
      length = ${hx_length}
      n_elems = ${hx_n_elems}
      A = '${fparse pi * (hx_dia_outer * hx_dia_outer / 4. - hx_radius_wall * hx_radius_wall)}'
      D_h = '${fparse hx_dia_outer - (2 * hx_radius_wall)}'
      fp = water
      initial_T = 300
    []
  []
  [jct7]
    type = JunctionParallelChannels1Phase
    position = '1 0 0.5'
    connections = 'hx/pri:out down_pipe_2:in'
    volume = 1e-5
  []
  [down_pipe_2]
    type = FlowChannel1Phase
    position = '1 0 0.25'
    orientation = '0 0 -1'
    length = 0.25
    n_elems = 10
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct8]
    type = JunctionOneToOne1Phase
    connections = 'down_pipe_2:out bottom_1:in'
  []
  [bottom_1]
    type = FlowChannel1Phase
    position = '1 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [pump]
    type = Pump1Phase
    position = '0.5 0 0'
    connections = 'bottom_1:out bottom_2:in'
    volume = 1e-4
    A_ref = ${A_pipe}
    head = 0
  []
  [bottom_2]
    type = FlowChannel1Phase
    position = '0.5 0 0'
    orientation = '-1 0 0'
    length = 0.5
    n_elems = 5
    A = ${A_pipe}
    D_h = ${pipe_dia}
  []
  [jct9]
    type = JunctionOneToOne1Phase
    connections = 'bottom_2:out up_pipe_1:in'
  []
  [inlet_sec]
    type = InletMassFlowRateTemperature1Phase
    input = 'hx/sec:in'
    m_dot = 0
    T = 300
  []
  [outlet_sec]
    type = Outlet1Phase
    input = 'hx/sec:out'
    p = 1e5
  []
[]
[ControlLogic]
  [set_point]
    type = GetFunctionValueControl
    function = ${m_dot_in}
  []
  [pid]
    type = PIDControl
    initial_value = 0.0
    set_point = set_point:value
    input = m_dot_pump
    K_p = 1.
    K_i = 4.
    K_d = 0
  []
  [set_pump_head]
    type = SetComponentRealValueControl
    component = pump
    parameter = head
    value = pid:output
  []
  [m_dot_sec_inlet_ctrl]
    type = GetFunctionValueControl
    function = m_dot_sec_fn
  []
  [set_m_dot_sec_ctrl]
    type = SetComponentRealValueControl
    component = inlet_sec
    parameter = m_dot
    value = m_dot_sec_inlet_ctrl:value
  []
[]
[Postprocessors]
  [power_to_coolant]
    type = ADHeatRateConvection1Phase
    block = core_chan
    P_hf = '${fparse pi *core_dia}'
  []
  [m_dot_pump]
    type = ADFlowJunctionFlux1Phase
    boundary = core_chan:in
    connection_index = 1
    equation = mass
    junction = jct7
  []
  [core_T_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = T
  []
  [core_p_in]
    type = SideAverageValue
    boundary = core_chan:in
    variable = p
  []
  [core_p_out]
    type = SideAverageValue
    boundary = core_chan:out
    variable = p
  []
  [core_delta_p]
    type = ParsedPostprocessor
    pp_names = 'core_p_in core_p_out'
    expression = 'core_p_in - core_p_out'
  []
  [hx_pri_T_out]
    type = SideAverageValue
    boundary = hx/pri:out
    variable = T
  []
  [hx_sec_T_in]
    type = SideAverageValue
    boundary = inlet_sec
    variable = T
  []
  [hx_sec_T_out]
    type = SideAverageValue
    boundary = outlet_sec
    variable = T
  []
  [m_dot_sec]
    type = ADFlowBoundaryFlux1Phase
    boundary = inlet_sec
    equation = mass
  []
  [Hw_hx_pri]
    type = ADElementAverageMaterialProperty
    mat_prop = Hw
    block = hx/pri
  []
  [fD_hx_pri]
    type = ADElementAverageMaterialProperty
    mat_prop = f_D
    block = hx/pri
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  start_time = 0
  [TimeStepper]
    type = IterationAdaptiveDT
    dt = 1
  []
  dtmax = 5
  end_time = 500
  line_search = basic
  solve_type = NEWTON
  petsc_options_iname = '-pc_type'
  petsc_options_value = 'lu'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-8
  nl_max_its = 25
[]
[Outputs]
  exodus = true
  [console]
    type = Console
    max_rows = 1
    outlier_variable_norms = false
  []
  print_linear_residuals = false
[]
(modules/thermal_hydraulics/test/tests/components/pump_1phase/pump_pressure_check.i)
# This test checks that the expected pressure rise due to the user supplied
# pump head matches the actual pressure rise across the pump.
# The orientation of flow channels in this test have no components in the z-direction
# due to the expected_pressure_rise_fcn not accounting for hydrostatic pressure.
head = 95.
dt = 0.1
g = 9.81
volume = 0.567
[GlobalParams]
  initial_T = 393.15
  initial_vel = 0.0372
  A = 0.567
  f = 0
  fp = fp
  scaling_factor_1phase = '1 1 1e-5'
  closures = simple_closures
[]
[FluidProperties]
  [fp]
    type = StiffenedGasFluidProperties
    gamma = 2.35
    q = -1167e3
    q_prime = 0
    p_inf = 1.e9
    cv = 1816
  []
[]
[Closures]
  [simple_closures]
    type = Closures1PhaseSimple
  []
[]
[Functions]
  [expected_pressure_rise_fcn]
    type = ParsedFunction
    expression = 'rhoV * g * head / volume'
    symbol_names = 'rhoV g head volume'
    symbol_values = 'pump_rhoV ${g} ${head} ${volume}'
  []
[]
[Components]
  [inlet]
    type = InletMassFlowRateTemperature1Phase
    input = 'pipe1:in'
    m_dot = 20
    T = 393.15
  []
  [pipe1]
    type = FlowChannel1Phase
    position = '0 0 0'
    orientation = '1 0 0'
    length = 1
    initial_p = 1.318964e+07
    n_elems = 10
  []
  [pump]
    type = Pump1Phase
    connections = 'pipe1:out pipe2:in'
    position = '1.02 0 0'
    initial_p = 1.318964e+07
    scaling_factor_rhoEV = 1e-5
    head = ${head}
    volume = ${volume}
    A_ref = 0.567
    initial_vel_x = 1
    initial_vel_y = 1
    initial_vel_z = 0
  []
  [pipe2]
    type = FlowChannel1Phase
    position = '1.04 0 0'
    orientation = '0 2 0'
    length = 0.96
    initial_p = 1.4072E+07
    n_elems = 10
  []
  [outlet]
    type = Outlet1Phase
    input = 'pipe2:out'
    p = 1.4072E+07
  []
[]
[Preconditioning]
  [pc]
    type = SMP
    full = true
  []
[]
[Executioner]
  type = Transient
  scheme = 'implicit-euler'
  start_time = 0
  dt = ${dt}
  num_steps = 4
  abort_on_solve_fail = true
  solve_type = 'PJFNK'
  line_search = 'basic'
  nl_rel_tol = 1e-8
  nl_abs_tol = 1e-6
  nl_max_its = 15
  l_tol = 1e-4
  [Quadrature]
    type = GAUSS
    order = SECOND
  []
[]
[Postprocessors]
  [pump_rhoV]
    type = ElementAverageValue
    variable = rhoV
    block = 'pump'
    execute_on = 'initial timestep_end'
  []
  [expected_pressure_rise]
    type = FunctionValuePostprocessor
    function = expected_pressure_rise_fcn
    indirect_dependencies = 'pump_rhoV'
    execute_on = 'initial timestep_end'
  []
  [p_inlet]
    type = SideAverageValue
    variable = p
    boundary = 'pipe1:out'
    execute_on = 'initial timestep_end'
  []
  [p_outlet]
    type = SideAverageValue
    variable = p
    boundary = 'pipe2:in'
    execute_on = 'initial timestep_end'
  []
  [actual_pressure_rise]
    type = DifferencePostprocessor
    value1 = p_outlet
    value2 = p_inlet
    execute_on = 'timestep_end'
  []
  [pressure_rise_diff]
    type = RelativeDifferencePostprocessor
    value1 = actual_pressure_rise
    value2 = expected_pressure_rise
    execute_on = 'timestep_end'
  []
[]
[Outputs]
  [out]
    type = CSV
    execute_on = 'FINAL'
    show = 'pressure_rise_diff'
  []
[]