- epsilonCoupled turbulent kinetic energy dissipation rate. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy dissipation rate. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - muDynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Dynamic viscosity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - rhoDensity. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Density. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - tkeCoupled turbulent kinetic energy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - uThe velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the x direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - variableThe name of the variable that this object applies to
C++ Type:AuxVariableName
Unit:(no unit assumed)
Controllable:No
Description:The name of the variable that this object applies to
 
kEpsilonViscosityAux
This is the auxiliary kernel used to compute the dynamic turbulent viscosity
where:
is the density,
is a closure parameter,
is the turbulent kinetic energy,
is the turbulent kinetic energy dissipation rate.
.
By setting parameter "bulk_wall_treatment" to true, the kernel allows us to set the value of the cells on the boundaries specified in "walls" to the dynamic turbulent viscosity predicted from the law of the wall or non-equilibrium wall functions. See INSFVTurbulentViscosityWallFunction for more details about the near-wall implementation.
If the boundary conditions for the dynamic turbulent viscosity are already set via INSFVTurbulentViscosityWallFunction, there is no need to add bulk wall treatment, i.e., we should set "bulk_wall_treatment" to false. This type of bulk wall treatment is mainly designed for porous media formulations with large computational cells.
Input Parameters
- C_muCoupled turbulent kinetic energy closure.
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Coupled turbulent kinetic energy closure.
 - blockThe list of blocks (ids or names) that this object will be applied
C++ Type:std::vector<SubdomainName>
Controllable:No
Description:The list of blocks (ids or names) that this object will be applied
 - boundaryThe list of boundaries (ids or names) from the mesh where this object applies
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:The list of boundaries (ids or names) from the mesh where this object applies
 - bulk_wall_treatmentFalseActivate bulk wall treatment.
Default:False
C++ Type:bool
Controllable:No
Description:Activate bulk wall treatment.
 - check_boundary_restrictedTrueWhether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
Default:True
C++ Type:bool
Controllable:No
Description:Whether to check for multiple element sides on the boundary in the case of a boundary restricted, element aux variable. Setting this to false will allow contribution to a single element's elemental value(s) from multiple boundary sides on the same element (example: when the restricted boundary exists on two or more sides of an element, such as at a corner of a mesh
 - execute_onLINEAR TIMESTEP_ENDThe list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
Default:LINEAR TIMESTEP_END
C++ Type:ExecFlagEnum
Options:XFEM_MARK, FORWARD, ADJOINT, HOMOGENEOUS_FORWARD, ADJOINT_TIMESTEP_BEGIN, ADJOINT_TIMESTEP_END, NONE, INITIAL, LINEAR, LINEAR_CONVERGENCE, NONLINEAR, NONLINEAR_CONVERGENCE, POSTCHECK, TIMESTEP_END, TIMESTEP_BEGIN, MULTIAPP_FIXED_POINT_END, MULTIAPP_FIXED_POINT_BEGIN, MULTIAPP_FIXED_POINT_CONVERGENCE, FINAL, CUSTOM, PRE_DISPLACE
Controllable:No
Description:The list of flag(s) indicating when this object should be executed. For a description of each flag, see https://mooseframework.inl.gov/source/interfaces/SetupInterface.html.
 - mu_t_ratio_max100000Maximum allowable mu_t_ratio : mu/mu_t.
Default:100000
C++ Type:double
Unit:(no unit assumed)
Controllable:No
Description:Maximum allowable mu_t_ratio : mu/mu_t.
 - scale_limiterstandardThe method used to limit the k-epsilon time scale.'none', 'standard'
Default:standard
C++ Type:MooseEnum
Options:none, standard
Controllable:No
Description:The method used to limit the k-epsilon time scale.'none', 'standard'
 - vThe velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the y direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - wThe velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
C++ Type:MooseFunctorName
Unit:(no unit assumed)
Controllable:No
Description:The velocity in the z direction. A functor is any of the following: a variable, a functor material property, a function, a postprocessor or a number.
 - wall_treatmenteq_newtonThe method used for computing the wall functions.'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
Default:eq_newton
C++ Type:MooseEnum
Options:eq_newton, eq_incremental, eq_linearized, neq
Controllable:No
Description:The method used for computing the wall functions.'eq_newton', 'eq_incremental', 'eq_linearized', 'neq'
 - wallsBoundaries that correspond to solid walls.
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Boundaries that correspond to solid walls.
 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.
C++ Type:std::vector<std::string>
Controllable:No
Description:Adds user-defined labels for accessing object parameters via control logic.
 - enableTrueSet the enabled status of the MooseObject.
Default:True
C++ Type:bool
Controllable:Yes
Description:Set the enabled status of the MooseObject.
 - newton_solveFalseWhether a Newton nonlinear solve is being used
Default:False
C++ Type:bool
Controllable:No
Description:Whether a Newton nonlinear solve is being used
 - search_methodnearest_node_connected_sidesChoice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
Default:nearest_node_connected_sides
C++ Type:MooseEnum
Options:nearest_node_connected_sides, all_proximate_sides
Controllable:No
Description:Choice of search algorithm. All options begin by finding the nearest node in the primary boundary to a query point in the secondary boundary. In the default nearest_node_connected_sides algorithm, primary boundary elements are searched iff that nearest node is one of their nodes. This is fast to determine via a pregenerated node-to-elem map and is robust on conforming meshes. In the optional all_proximate_sides algorithm, primary boundary elements are searched iff they touch that nearest node, even if they are not topologically connected to it. This is more CPU-intensive but is necessary for robustness on any boundary surfaces which has disconnections (such as Flex IGA meshes) or non-conformity (such as hanging nodes in adaptively h-refined meshes).
 - seed0The seed for the master random number generator
Default:0
C++ Type:unsigned int
Controllable:No
Description:The seed for the master random number generator
 - use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
Default:False
C++ Type:bool
Controllable:No
Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.
 
Advanced Parameters
- prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
C++ Type:MaterialPropertyName
Unit:(no unit assumed)
Controllable:No
Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.
 - use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
Default:False
C++ Type:bool
Controllable:No
Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.
 
Material Property Retrieval Parameters
Input Files
- (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/segregated/BFS_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-non-eq-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/block-restricted/block-ke.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-linear-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated-transient/BFS_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-bulk.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated-transient/channel_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-capped.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/segregated/channel_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-no-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated/channel_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-std-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-inc-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated/BFS_ERCOFTAC.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-std-wall.i)
 - (modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy-wall.i)
 
bulk_wall_treatment
Default:False
C++ Type:bool
Controllable:No
Description:Activate bulk wall treatment.
walls
C++ Type:std::vector<BoundaryName>
Controllable:No
Description:Boundaries that correspond to solid walls.
bulk_wall_treatment
Default:False
C++ Type:bool
Controllable:No
Description:Activate bulk wall treatment.
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with energy transport
# Standard wall functions without temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'top'
    value = 1
  []
  [T_cold]
    type = FVDirichletBC
    variable = T_fluid
    boundary = 'bottom'
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
  [k_t]
    type = ADParsedFunctorMaterial
    expression = 'mu_t * cp / Pr_t'
    functor_names = 'mu_t ${cp} ${Pr_t}'
    functor_symbols = 'mu_t cp Pr_t'
    property_name = 'k_t'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/segregated/BFS_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe BFS
# Case Number: 031
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H/ Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [gen]
    type = CartesianMeshGenerator
    dim = 2
    dx = '${fparse 10.0*H} ${fparse 20.0*H}'
    dy = '${H} ${fparse 5*H}'
    ix = '8 16'
    iy = '2 8'
    subdomain_id = '
                    2 1
                    1 1
                  '
  []
  [corner_walls]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block ='1'
    paired_block ='2'
    new_boundary = 'wall-side'
  []
  [delete_bottom]
    type = BlockDeletionGenerator
    input = corner_walls
    block ='2'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e-8
    solver_sys = pressure_system
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [inlet_TKE]
    type = INSFVInletIntensityTKEBC
    boundary = 'left'
    variable = TKE
    u = vel_x
    v = vel_y
    intensity = ${intensity}
  []
  [inlet_TKED]
    type = INSFVMixingLengthTKEDBC
    boundary = 'left'
    variable = TKED
    tke = TKE
    characteristic_length = '${fparse 2*H}'
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    functor = 0
  []
  [walls-u]
    type = FVDirichletBC
    boundary = ${walls}
    variable = vel_x
    value = 0
  []
  [walls-v]
    type = FVDirichletBC
    boundary = ${walls}
    variable = vel_y
    value = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = ${walls}
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.3 0.3'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  [console]
    type = Console
    outlier_variable_norms = false
  []
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_entry_channel_wall]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_entry_channel]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium wall formulation
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-non-eq-wall.i)
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = ${lid_velocity}
    solver_sys = u_system
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = 0
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
  []
[]
[LinearFVKernels]
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = false
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [top_x]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    variable = vel_x
    boundary = 'top'
    functor = 1
  []
  [no_slip_x]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    variable = vel_x
    boundary = 'left right bottom'
    functor = 0
  []
  [no_slip_y]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    variable = vel_y
    boundary = 'left right top bottom'
    functor = 0
  []
  [pressure-extrapolation]
    type = LinearFVExtrapolatedPressureBC
    boundary = 'left right top bottom'
    variable = pressure
    use_two_term_expansion = true
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = 'bottom top'
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
  [yplus]
    type = MooseLinearVariableFVReal
  []
  [mu_eff]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
  [compute_mu_eff]
    type = ParsedAux
    variable = 'mu_eff'
    coupled_variables = 'mu_t'
    expression = 'mu_t + ${mu}'
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.5 0.5'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/block-restricted/block-ke.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = '${fparse 0.16*Re^(-1./8.)}'
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'walls'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [block_left]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = '${fparse -2*H}'
    xmax = '${fparse -H}'
    ymin = 0
    ymax = ${L}
    nx = 3
    ny = 4
  []
  [block_1]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = '${fparse -H}'
    xmax = 0
    ymin = 0
    ymax = ${L}
    nx = 4
    ny = 4
    bias_x = '${fparse 1/0.7}'
  []
  [block_2]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${H}
    ymin = 0
    ymax = ${L}
    nx = 4
    ny = 4
    bias_x = 0.7
  []
  [block_right]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = ${H}
    xmax = '${fparse 2*H}'
    ymin = 0
    ymax = ${L}
    nx = 3
    ny = 4
  []
  [smg]
    type = StitchedMeshGenerator
    inputs = 'block_left block_1 block_2 block_right'
    stitch_boundaries_pairs = 'right left; right left; right left'
  []
  [middle]
    input = smg
    type = SubdomainBoundingBoxGenerator
    block_id = 1
    bottom_left = '${fparse -H} 0 0'
    top_right = '${H} ${L} 50'
  []
  [walls]
    type = SideSetsBetweenSubdomainsGenerator
    primary_block = 1
    paired_block = 0
    new_boundary = walls
    input = middle
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
    block = 1
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = 0.0
    solver_sys = u_system
    block = 1
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = ${bulk_u}
    solver_sys = v_system
    block = 1
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
    block = 1
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
    block = 1
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    block = 1
  []
[]
[LinearFVKernels]
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = false
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [inlet-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'bottom'
    variable = vel_x
    functor = 0
  []
  [inlet-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'bottom'
    variable = vel_y
    functor = '${bulk_u}'
  []
  [walls-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'walls'
    variable = vel_x
    functor = 0.0
  []
  [walls-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'walls'
    variable = vel_y
    functor = 0.0
  []
  [outlet_u]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'top'
    variable = vel_x
    use_two_term_expansion = false
  []
  [outlet_v]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'top'
    variable = vel_y
    use_two_term_expansion = false
  []
  [outlet_p]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'top'
    variable = pressure
    functor = 0.0
  []
  [inlet_TKE]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'bottom'
    variable = TKE
    functor = '${k_init}'
  []
  [outlet_TKE]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'top'
    variable = TKE
    use_two_term_expansion = false
  []
  [inlet_TKED]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'bottom'
    variable = TKED
    functor = '${eps_init}'
  []
  [outlet_TKED]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'top'
    variable = TKED
    use_two_term_expansion = false
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = 'walls'
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    block = 1
  []
  [yplus]
    type = MooseLinearVariableFVReal
    block = 1
  []
  [mu_eff]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    block = 1
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
  [compute_mu_eff]
    type = ParsedAux
    variable = 'mu_eff'
    coupled_variables = 'mu_t'
    expression = 'mu_t + ${mu}'
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.2 0.2'
  turbulence_field_relaxation = '0.2 0.2'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  exodus = true
  execute_on = timestep_end
  csv = true
[]
[VectorPostprocessors]
  [line_wall]
    type = LineValueSampler
    start_point = '${fparse 0.99 * H} ${fparse 0.125 * L} 0'
    end_point = '${fparse 0.99 * H} ${fparse 0.875 * L} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_center_channel]
    type = LineValueSampler
    start_point = ' ${fparse 0.0001 * H} ${fparse 0.125 * L} 0'
    end_point = '${fparse 0.0001 * H} ${fparse 0.875 * L} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_radius_channel]
    type = LineValueSampler
    start_point = '${fparse 0.51 * H} ${fparse 0.125 * L} 0'
    end_point = '${fparse 0.51 * H} ${fparse 0.875 * L} 0'
    num_points =  ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-linear-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Linear wall function formulation (faster runs)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated-transient/BFS_ERCOFTAC.i)
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'neq' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [gen]
    type = CartesianMeshGenerator
    dim = 2
    dx = '${fparse 10.0*H} ${fparse 20.0*H}'
    dy = '${H} ${fparse 5*H}'
    ix = '8 16'
    iy = '2 8'
    subdomain_id = '
                    2 1
                    1 1
                  '
  []
  [corner_walls]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block ='1'
    paired_block ='2'
    new_boundary = 'wall-side'
  []
  [delete_bottom]
    type = BlockDeletionGenerator
    input = corner_walls
    block ='2'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = ${bulk_u}
    solver_sys = u_system
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = 0
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
  []
[]
[LinearFVKernels]
  [u_time]
    type = LinearFVTimeDerivative
    variable = vel_x
    factor = ${rho}
  []
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_time]
    type = LinearFVTimeDerivative
    variable = vel_y
    factor = ${rho}
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_time]
    type = LinearFVTimeDerivative
    variable = TKE
    factor = ${rho}
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = false
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_time]
    type = LinearFVTimeDerivative
    variable = TKED
    factor = ${rho}
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [inlet-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [inlet_TKE]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKE
    functor = '${k_init}'
  []
  [inlet_TKED]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKED
    functor = '${eps_init}'
  []
  [outlet_p]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'right'
    variable = pressure
    functor = 0.0
  []
  [outlet_u]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_x
    use_two_term_expansion = false
  []
  [outlet_v]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_y
    use_two_term_expansion = false
  []
  [outlet_TKE]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKE
    use_two_term_expansion = false
  []
  [outlet_TKED]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKED
    use_two_term_expansion = false
  []
  [walls-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = ${walls}
    variable = vel_x
    functor = 0.0
  []
  [walls-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = ${walls}
    variable = vel_y
    functor = 0.0
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = ${walls}
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
  [yplus]
    type = MooseLinearVariableFVReal
  []
  [mu_eff]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init + mu}'
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
  [compute_mu_eff]
    type = ParsedAux
    variable = 'mu_eff'
    coupled_variables = 'mu_t'
    expression = 'mu_t + ${mu}'
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = PIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.5 0.5'
  num_iterations = 20
  pressure_absolute_tolerance = 1e-6
  momentum_absolute_tolerance = 1e-6
  turbulence_absolute_tolerance = '1e-6 1e-6'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
  dt = 10.0
  num_steps = 10
  num_piso_iterations = 2
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_entry_channel_wall]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_entry_channel]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-non-eq-bulk.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# Standard wall functions with non-equilibrium bulk formaultion
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated-transient/channel_ERCOFTAC.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k =1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton'  # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [block_1]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 0
    ymax = ${H}
    nx = 4
    ny = 3
    bias_y = 0.7
  []
  [block_2]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = ${fparse -H}
    ymax = 0
    nx = 4
    ny = 3
    bias_y = ${fparse 1/0.7}
  []
  [smg]
    type = StitchedMeshGenerator
    inputs = 'block_1 block_2'
    clear_stitched_boundary_ids = true
    stitch_boundaries_pairs = 'bottom top'
    merge_boundaries_with_same_name = true
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = ${bulk_u}
    solver_sys = u_system
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = 0
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
  []
[]
[LinearFVKernels]
  [u_time]
    type = LinearFVTimeDerivative
    variable = vel_x
    factor = ${rho}
  []
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_time]
    type = LinearFVTimeDerivative
    variable = vel_y
    factor = ${rho}
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_time]
    type = LinearFVTimeDerivative
    variable = TKE
    factor = ${rho}
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = false
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_time]
    type = LinearFVTimeDerivative
    variable = TKED
    factor = ${rho}
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [inlet-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'top bottom'
    variable = vel_x
    functor = 0.0
  []
  [walls-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'top bottom'
    variable = vel_y
    functor = 0.0
  []
  [outlet_u]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_x
    use_two_term_expansion = false
  []
  [outlet_v]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_y
    use_two_term_expansion = false
  []
  [outlet_p]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'right'
    variable = pressure
    functor = 0.0
  []
  [inlet_TKE]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKE
    functor = '${k_init}'
  []
  [outlet_TKE]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKE
    use_two_term_expansion = false
  []
  [inlet_TKED]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKED
    functor = '${eps_init}'
  []
  [outlet_TKED]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKED
    use_two_term_expansion = false
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = 'bottom top'
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
  [yplus]
    type = MooseLinearVariableFVReal
  []
  [mu_eff]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
  [compute_mu_eff]
    type = ParsedAux
    variable = 'mu_eff'
    coupled_variables = 'mu_t'
    expression = 'mu_t + ${mu}'
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = PIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.25 0.25'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
  dt = 1.0
  num_steps = 2
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_center_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_radius_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
    num_points =  ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-capped.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model with capped mixing length
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
C_pl = 0.1
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  [break_symmetries]
    type = ParsedNodeTransformGenerator
    input = gen
    constant_names = 'side_length'
    constant_expressions = '${side_length}'
    x_function = 'if(x<side_length*1.001 / 2 & x > side_length * 0.999 / 2, x * 1.05, x)'
    y_function = 'if(y<side_length*1.001 / 2 & y > side_length * 0.999 / 2, y * 1.05, y)'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[ICs]
  [vx]
    type = FunctionIC
    variable = vel_x
    function = 'if(y>0.09, 0.1, -0.001)'
  []
  [vy]
    type = FunctionIC
    variable = vel_y
    function = 'if(x>0.05, -0.001, 0.001)'
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C_pl = ${C_pl}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    C_pl = ${C_pl}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/segregated/channel_ERCOFTAC.i)
##########################################################
# ERCOFTAC test case foe turbulent channel flow
# Case Number: 032
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Equilibrium + Newton wall treatement
# SIMPLE solve
##########################################################
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
pressure_tag = "pressure_grad"
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [block_1]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 0
    ymax = ${H}
    nx = 4
    ny = 3
    bias_y = 0.7
  []
  [block_2]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = ${fparse -H}
    ymax = 0
    nx = 4
    ny = 3
    bias_y = ${fparse 1/0.7}
  []
  [smg]
    type = StitchedMeshGenerator
    inputs = 'block_1 block_2'
    clear_stitched_boundary_ids = true
    stitch_boundaries_pairs = 'bottom top'
    merge_boundaries_with_same_name = true
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
  velocity_interp_method = 'rc'
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = ${bulk_u}
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    initial_condition = 1e-8
    solver_sys = pressure_system
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = no
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = no
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[FVBCs]
  [inlet-u]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = INSFVInletVelocityBC
    boundary = 'left'
    variable = vel_y
    functor = 0
  []
  [walls-u]
    type = FVDirichletBC
    boundary = 'bottom top'
    variable = vel_x
    value = 0
  []
  [walls-v]
    type = FVDirichletBC
    boundary = 'bottom top'
    variable = vel_y
    value = 0
  []
  [outlet_p]
    type = INSFVOutletPressureBC
    boundary = 'right'
    variable = pressure
    function = 0
  []
  [inlet_TKE]
    type = FVDirichletBC
    boundary = 'left'
    variable = TKE
    value = '${k_init}'
  []
  [inlet_TKED]
    type = FVDirichletBC
    boundary = 'left'
    variable = TKED
    value = '${eps_init}'
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'bottom top'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
  [yplus]
    type = MooseVariableFVReal
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.2 0.2'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_center_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_radius_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
    num_points =  ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-no-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# No wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = ''
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
  [walls_TKED]
    type = INSFVTKEDWallFunctionBC
    boundary = 'left right top bottom'
    variable = TKED
    u = vel_x
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
  []
  [walls_TKE]
    type = FVDirichletBC
    boundary = 'left right top bottom'
    variable = TKE
    value = ${k_init}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.9 0.9'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/channel/linear-segregated/channel_ERCOFTAC.i)
H = 1 #halfwidth of the channel
L = 100
Re = 13700
rho = 1
bulk_u = 1
mu = '${fparse rho * bulk_u * 2 * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = ${fparse 0.16*Re^(-1./8.)}
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / (2*H)}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'top bottom'
wall_treatment = 'eq_newton'  # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [block_1]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = 0
    ymax = ${H}
    nx = 4
    ny = 4
    bias_y = 0.7
  []
  [block_2]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${L}
    ymin = ${fparse -H}
    ymax = 0
    nx = 4
    ny = 4
    bias_y = ${fparse 1/0.7}
  []
  [smg]
    type = StitchedMeshGenerator
    inputs = 'block_1 block_2'
    clear_stitched_boundary_ids = true
    stitch_boundaries_pairs = 'bottom top'
    merge_boundaries_with_same_name = true
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = ${bulk_u}
    solver_sys = u_system
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = 0
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
  []
[]
[LinearFVKernels]
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = false
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [inlet-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [walls-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'top bottom'
    variable = vel_x
    functor = 0.0
  []
  [walls-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'top bottom'
    variable = vel_y
    functor = 0.0
  []
  [outlet_u]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_x
    use_two_term_expansion = false
  []
  [outlet_v]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_y
    use_two_term_expansion = false
  []
  [outlet_p]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'right'
    variable = pressure
    functor = 0.0
  []
  [inlet_TKE]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKE
    functor = '${k_init}'
  []
  [outlet_TKE]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKE
    use_two_term_expansion = false
  []
  [inlet_TKED]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKED
    functor = '${eps_init}'
  []
  [outlet_TKED]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKED
    use_two_term_expansion = false
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = 'bottom top'
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
  [yplus]
    type = MooseLinearVariableFVReal
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.2 0.2'
  turbulence_field_relaxation = '0.2 0.2'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
[]
[AuxVariables]
  [pressure_over_density]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
[]
[AuxKernels]
  [compute_pressure_over_density]
    type = ParsedAux
    variable = pressure_over_density
    coupled_variables = 'pressure'
    expression = 'pressure/${rho}'
  []
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure_over_density TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure_over_density TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_center_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.0001} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.0001} 0'
    num_points = ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure_over_density TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_radius_channel]
    type = LineValueSampler
    start_point = '${fparse 0.125 * L} ${fparse 0.5 * H} 0'
    end_point = '${fparse 0.875 * L} ${fparse 0.5 * H} 0'
    num_points =  ${Mesh/block_1/nx}
    variable = 'vel_x vel_y pressure_over_density TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/linear-segregated/lid-driven-turb-std-wall.i)
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = ${lid_velocity}
    solver_sys = u_system
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = 0
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
  []
[]
[LinearFVKernels]
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = true
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = true
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = true
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = true
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = true
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = true
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = true
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = true
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = true
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [top_x]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    variable = vel_x
    boundary = 'top'
    functor = 1
  []
  [no_slip_x]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    variable = vel_x
    boundary = 'left right bottom'
    functor = 0
  []
  [no_slip_y]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    variable = vel_y
    boundary = 'left right top bottom'
    functor = 0
  []
  [pressure-extrapolation]
    type = LinearFVExtrapolatedPressureBC
    boundary = 'left right top bottom'
    variable = pressure
    use_two_term_expansion = true
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = ${walls}
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
  [yplus]
    type = MooseLinearVariableFVReal
  []
  [mu_eff]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
  [compute_mu_eff]
    type = ParsedAux
    variable = 'mu_eff'
    coupled_variables = 'mu_t'
    expression = 'mu_t + ${mu}'
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.5 0.5'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-inc-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Incremental wall function formulation (similar to OpenFOAM)
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  continue_on_max_its = true
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/bfs/linear-segregated/BFS_ERCOFTAC.i)
Re = 5100
rho = 1.0
bulk_u = 1.0
H = 1.0
mu = '${fparse rho * bulk_u * H / Re}'
advected_interp_method = 'upwind'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Initial and Boundary Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * bulk_u)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / H}'
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'bottom wall-side top'
wall_treatment = 'eq_incremental' # Options: eq_newton, eq_incremental, eq_linearized, neq
[Mesh]
  [gen]
    type = CartesianMeshGenerator
    dim = 2
    dx = '${fparse 10.0*H} ${fparse 20.0*H}'
    dy = '${H} ${fparse 5*H}'
    ix = '8 16'
    iy = '2 8'
    subdomain_id = '
                    2 1
                    1 1
                  '
  []
  [corner_walls]
    type = SideSetsBetweenSubdomainsGenerator
    input = gen
    primary_block = '1'
    paired_block = '2'
    new_boundary = 'wall-side'
  []
  [delete_bottom]
    type = BlockDeletionGenerator
    input = corner_walls
    block = '2'
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  linear_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = ${advected_interp_method}
[]
[UserObjects]
  [rc]
    type = RhieChowMassFlux
    u = vel_x
    v = vel_y
    pressure = pressure
    rho = ${rho}
    p_diffusion_kernel = p_diffusion
  []
[]
[Variables]
  [vel_x]
    type = MooseLinearVariableFVReal
    initial_condition = ${bulk_u}
    solver_sys = u_system
  []
  [vel_y]
    type = MooseLinearVariableFVReal
    initial_condition = 0
    solver_sys = v_system
  []
  [pressure]
    type = MooseLinearVariableFVReal
    initial_condition = 1e-8
    solver_sys = pressure_system
  []
  [TKE]
    type = MooseLinearVariableFVReal
    solver_sys = TKE_system
    initial_condition = ${k_init}
  []
  [TKED]
    type = MooseLinearVariableFVReal
    solver_sys = TKED_system
    initial_condition = ${eps_init}
  []
[]
[LinearFVKernels]
  [u_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_x
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'x'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [u_diffusion]
    type = LinearFVDiffusion
    variable = vel_x
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [u_pressure]
    type = LinearFVMomentumPressure
    variable = vel_x
    pressure = pressure
    momentum_component = 'x'
  []
  [v_advection_stress]
    type = LinearWCNSFVMomentumFlux
    variable = vel_y
    advected_interp_method = ${advected_interp_method}
    mu = 'mu_t'
    u = vel_x
    v = vel_y
    momentum_component = 'y'
    rhie_chow_user_object = 'rc'
    use_nonorthogonal_correction = false
    use_deviatoric_terms = yes
  []
  [v_diffusion]
    type = LinearFVDiffusion
    variable = vel_y
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [v_pressure]
    type = LinearFVMomentumPressure
    variable = vel_y
    pressure = pressure
    momentum_component = 'y'
  []
  [p_diffusion]
    type = LinearFVAnisotropicDiffusion
    variable = pressure
    diffusion_tensor = Ainv
    use_nonorthogonal_correction = false
  []
  [HbyA_divergence]
    type = LinearFVDivergence
    variable = pressure
    face_flux = HbyA
    force_boundary_execution = true
  []
  [TKE_advection]
    type = LinearFVTurbulentAdvection
    variable = TKE
  []
  [TKE_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
  []
  [TKE_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKE
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_k}
    use_nonorthogonal_correction = false
  []
  [TKE_source_sink]
    type = LinearFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
  [TKED_advection]
    type = LinearFVTurbulentAdvection
    variable = TKED
    walls = ${walls}
  []
  [TKED_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = ${mu}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_turb_diffusion]
    type = LinearFVTurbulentDiffusion
    variable = TKED
    diffusion_coeff = 'mu_t'
    scaling_coeff = ${sigma_eps}
    use_nonorthogonal_correction = false
    walls = ${walls}
  []
  [TKED_source_sink]
    type = LinearFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    C_pl = 1e10
  []
[]
[LinearFVBCs]
  [inlet-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_x
    functor = '${bulk_u}'
  []
  [inlet-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = vel_y
    functor = '0.0'
  []
  [inlet_TKE]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKE
    functor = '${k_init}'
  []
  [inlet_TKED]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'left'
    variable = TKED
    functor = '${eps_init}'
  []
  [outlet_p]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = 'right'
    variable = pressure
    functor = 0.0
  []
  [outlet_u]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_x
    use_two_term_expansion = false
  []
  [outlet_v]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = vel_y
    use_two_term_expansion = false
  []
  [outlet_TKE]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKE
    use_two_term_expansion = false
  []
  [outlet_TKED]
    type = LinearFVAdvectionDiffusionOutflowBC
    boundary = 'right'
    variable = TKED
    use_two_term_expansion = false
  []
  [walls-u]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = ${walls}
    variable = vel_x
    functor = 0.0
  []
  [walls-v]
    type = LinearFVAdvectionDiffusionFunctorDirichletBC
    boundary = ${walls}
    variable = vel_y
    functor = 0.0
  []
  [walls_mu_t]
    type = LinearFVTurbulentViscosityWallFunctionBC
    boundary = ${walls}
    variable = 'mu_t'
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
  []
  [yplus]
    type = MooseLinearVariableFVReal
  []
  [mu_eff]
    type = MooseLinearVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init + mu}'
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
    mu_t_ratio_max = 1e20
  []
  [compute_y_plus]
    type = RANSYPlusAux
    variable = yplus
    tke = TKE
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    walls = ${walls}
    wall_treatment = ${wall_treatment}
    execute_on = 'NONLINEAR'
  []
  [compute_mu_eff]
    type = ParsedAux
    variable = 'mu_eff'
    coupled_variables = 'mu_t'
    expression = 'mu_t + ${mu}'
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLE
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKE_system TKED_system'
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_tol = 1e-14
  pressure_l_tol = 1e-14
  turbulence_l_tol = 1e-14
  momentum_equation_relaxation = 0.7
  pressure_variable_relaxation = 0.3
  turbulence_equation_relaxation = '0.5 0.5'
  num_iterations = 1000
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  turbulence_petsc_options_iname = '-pc_type -pc_hypre_type'
  turbulence_petsc_options_value = 'hypre boomeramg'
  print_fields = false
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  [console]
    type = Console
    outlier_variable_norms = false
  []
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_entry_channel_wall]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 1.00001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 1.00001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [line_quarter_entry_channel]
    type = LineValueSampler
    start_point = '${fparse 0.5 * H} ${fparse 2.25001 * H} 0'
    end_point = '${fparse 29.5 * H} ${fparse 2.25001 * H} 0'
    num_points = 24
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-std-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 1e-3
rho = 1.0
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
    mu_interp_method = 'average'
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
    mu_interp_method = 'average'
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
    coeff_interp_method = 'average'
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
    coeff_interp_method = 'average'
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    execute_on = 'NONLINEAR'
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  continue_on_max_its = true
  momentum_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]
(modules/navier_stokes/test/tests/finite_volume/ins/turbulence/lid-driven/segregated/lid-driven-turb-energy-wall.i)
##########################################################
# Lid-driven cavity test
# Reynolds: 5,000
# Author: Dr. Mauricio Tano
# Last Update: November, 2023
# Turbulent model using:
# k-epsilon model
# Standard wall functions with temperature wall functions
# SIMPLE Solve
##########################################################
### Thermophysical Properties ###
mu = 2e-5
rho = 1.0
k = 0.01
cp = 10.0
Pr_t = 0.9
### Operation Conditions ###
lid_velocity = 1.0
side_length = 0.1
### Initial Conditions ###
intensity = 0.01
k_init = '${fparse 1.5*(intensity * lid_velocity)^2}'
eps_init = '${fparse C_mu^0.75 * k_init^1.5 / side_length}'
### k-epsilon Closure Parameters ###
sigma_k = 1.0
sigma_eps = 1.3
C1_eps = 1.44
C2_eps = 1.92
C_mu = 0.09
### Modeling parameters ###
bulk_wall_treatment = false
walls = 'left top right bottom'
wall_treatment_v = 'eq_newton' # Options: eq_newton, eq_incremental, eq_linearized, neq
wall_treatment_T = 'eq_linearized' # Options: eq_newton, eq_incremental, eq_linearized, neq
pressure_tag = "pressure_grad"
[GlobalParams]
  rhie_chow_user_object = 'rc'
  advected_interp_method = 'upwind'
  velocity_interp_method = 'rc'
[]
[Mesh]
  [gen]
    type = GeneratedMeshGenerator
    dim = 2
    xmin = 0
    xmax = ${side_length}
    ymin = 0
    ymax = ${side_length}
    nx = 12
    ny = 12
  []
  # Prevent test diffing on distributed parallel element numbering
  allow_renumbering = false
[]
[Problem]
  nl_sys_names = 'u_system v_system pressure_system energy_system TKE_system TKED_system'
  previous_nl_solution_required = true
[]
[UserObjects]
  [rc]
    type = INSFVRhieChowInterpolatorSegregated
    u = vel_x
    v = vel_y
    pressure = pressure
  []
[]
[Variables]
  [vel_x]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = u_system
    two_term_boundary_expansion = false
  []
  [vel_y]
    type = INSFVVelocityVariable
    initial_condition = 0.0
    solver_sys = v_system
    two_term_boundary_expansion = false
  []
  [pressure]
    type = INSFVPressureVariable
    solver_sys = pressure_system
    initial_condition = 0.2
    two_term_boundary_expansion = false
  []
  [T_fluid]
    type = INSFVEnergyVariable
    solver_sys = energy_system
    initial_condition = 1.0
    two_term_boundary_expansion = false
  []
  [TKE]
    type = INSFVEnergyVariable
    solver_sys = TKE_system
    initial_condition = ${k_init}
    two_term_boundary_expansion = false
  []
  [TKED]
    type = INSFVEnergyVariable
    solver_sys = TKED_system
    initial_condition = ${eps_init}
    two_term_boundary_expansion = false
  []
[]
[FVKernels]
  [u_advection]
    type = INSFVMomentumAdvection
    variable = vel_x
    rho = ${rho}
    momentum_component = 'x'
  []
  [u_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = ${mu}
    momentum_component = 'x'
  []
  [u_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_x
    mu = 'mu_t'
    momentum_component = 'x'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [u_pressure]
    type = INSFVMomentumPressure
    variable = vel_x
    momentum_component = 'x'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [v_advection]
    type = INSFVMomentumAdvection
    variable = vel_y
    rho = ${rho}
    momentum_component = 'y'
  []
  [v_viscosity]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = ${mu}
    momentum_component = 'y'
  []
  [v_viscosity_turbulent]
    type = INSFVMomentumDiffusion
    variable = vel_y
    mu = 'mu_t'
    momentum_component = 'y'
    complete_expansion = true
    u = vel_x
    v = vel_y
  []
  [v_pressure]
    type = INSFVMomentumPressure
    variable = vel_y
    momentum_component = 'y'
    pressure = pressure
    extra_vector_tags = ${pressure_tag}
  []
  [p_diffusion]
    type = FVAnisotropicDiffusion
    variable = pressure
    coeff = "Ainv"
    coeff_interp_method = 'average'
  []
  [p_source]
    type = FVDivergence
    variable = pressure
    vector_field = "HbyA"
    force_boundary_execution = true
  []
  [temp_advection]
    type = INSFVEnergyAdvection
    variable = T_fluid
  []
  [temp_conduction]
    type = FVDiffusion
    coeff = ${k}
    variable = T_fluid
  []
  [temp_turb_conduction]
    type = FVDiffusion
    coeff = 'k_t'
    variable = T_fluid
  []
  [TKE_advection]
    type = INSFVTurbulentAdvection
    variable = TKE
    rho = ${rho}
  []
  [TKE_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = ${mu}
  []
  [TKE_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKE
    coeff = 'mu_t'
    scaling_coef = ${sigma_k}
  []
  [TKE_source_sink]
    type = INSFVTKESourceSink
    variable = TKE
    u = vel_x
    v = vel_y
    epsilon = TKED
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
  []
  [TKED_advection]
    type = INSFVTurbulentAdvection
    variable = TKED
    rho = ${rho}
    walls = ${walls}
  []
  [TKED_diffusion]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = ${mu}
    walls = ${walls}
  []
  [TKED_diffusion_turbulent]
    type = INSFVTurbulentDiffusion
    variable = TKED
    coeff = 'mu_t'
    scaling_coef = ${sigma_eps}
    walls = ${walls}
  []
  [TKED_source_sink]
    type = INSFVTKEDSourceSink
    variable = TKED
    u = vel_x
    v = vel_y
    tke = TKE
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    C1_eps = ${C1_eps}
    C2_eps = ${C2_eps}
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
  []
[]
[FVBCs]
  [top_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'top'
    function = ${lid_velocity}
  []
  [no_slip_x]
    type = INSFVNoSlipWallBC
    variable = vel_x
    boundary = 'left right bottom'
    function = 0
  []
  [no_slip_y]
    type = INSFVNoSlipWallBC
    variable = vel_y
    boundary = 'left right top bottom'
    function = 0
  []
  [T_hot]
    type = INSFVTurbulentTemperatureWallFunction
    variable = T_fluid
    boundary = 'top'
    T_w = 1
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    cp = ${cp}
    kappa = ${k}
    tke = TKE
    wall_treatment = ${wall_treatment_T}
  []
  [T_cold]
    type = INSFVTurbulentTemperatureWallFunction
    variable = T_fluid
    boundary = 'bottom'
    T_w = 0
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    cp = ${cp}
    kappa = ${k}
    tke = TKE
    wall_treatment = ${wall_treatment_T}
  []
  [walls_mu_t]
    type = INSFVTurbulentViscosityWallFunction
    boundary = 'left right top bottom'
    variable = mu_t
    u = vel_x
    v = vel_y
    rho = ${rho}
    mu = ${mu}
    mu_t = 'mu_t'
    tke = TKE
    wall_treatment = ${wall_treatment_v}
  []
[]
[AuxVariables]
  [mu_t]
    type = MooseVariableFVReal
    initial_condition = '${fparse rho * C_mu * ${k_init}^2 / eps_init}'
    two_term_boundary_expansion = false
  []
  [k_t]
    type = MooseVariableFVReal
    initial_condition = 1.0
  []
[]
[AuxKernels]
  [compute_mu_t]
    type = kEpsilonViscosityAux
    variable = mu_t
    C_mu = ${C_mu}
    tke = TKE
    epsilon = TKED
    mu = ${mu}
    rho = ${rho}
    u = vel_x
    v = vel_y
    bulk_wall_treatment = ${bulk_wall_treatment}
    walls = ${walls}
    wall_treatment = ${wall_treatment_v}
    execute_on = 'NONLINEAR'
  []
  [compute_k_t]
    type = TurbulentConductivityAux
    variable = k_t
    Pr_t = ${Pr_t}
    cp = ${cp}
    mu_t = 'mu_t'
    execute_on = 'NONLINEAR'
  []
[]
[FunctorMaterials]
  [ins_fv]
    type = INSFVEnthalpyFunctorMaterial
    temperature = 'T_fluid'
    rho = ${rho}
    cp = ${cp}
  []
[]
[Executioner]
  type = SIMPLENonlinearAssembly
  rhie_chow_user_object = 'rc'
  momentum_systems = 'u_system v_system'
  pressure_system = 'pressure_system'
  energy_system = 'energy_system'
  turbulence_systems = 'TKED_system TKE_system'
  pressure_gradient_tag = ${pressure_tag}
  momentum_equation_relaxation = 0.8
  pressure_variable_relaxation = 0.5
  energy_equation_relaxation = 0.9
  turbulence_equation_relaxation = '0.8 0.8'
  num_iterations = 500
  pressure_absolute_tolerance = 1e-12
  momentum_absolute_tolerance = 1e-12
  energy_absolute_tolerance = 1e-12
  turbulence_absolute_tolerance = '1e-12 1e-12'
  momentum_petsc_options_iname = '-pc_type -pc_hypre_type'
  momentum_petsc_options_value = 'hypre boomeramg'
  pressure_petsc_options_iname = '-pc_type -pc_hypre_type'
  pressure_petsc_options_value = 'hypre boomeramg'
  energy_petsc_options_iname = '-pc_type -pc_hypre_type'
  energy_petsc_options_value = 'hypre boomeramg'
  momentum_l_abs_tol = 1e-14
  energy_l_abs_tol = 1e-14
  pressure_l_abs_tol = 1e-14
  turbulence_l_abs_tol = 1e-14
  momentum_l_max_its = 30
  pressure_l_max_its = 30
  momentum_l_tol = 0.0
  energy_l_tol = 0.0
  pressure_l_tol = 0.0
  turbulence_l_tol = 0.0
  print_fields = false
  pin_pressure = true
  pressure_pin_value = 0.0
  pressure_pin_point = '0.01 0.099 0.0'
  continue_on_max_its = true
[]
[Outputs]
  csv = true
  perf_graph = false
  print_nonlinear_residuals = false
  print_linear_residuals = true
[]
[VectorPostprocessors]
  [side_bottom]
    type = SideValueSampler
    boundary = 'bottom'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_top]
    type = SideValueSampler
    boundary = 'top'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [side_left]
    type = SideValueSampler
    boundary = 'left'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [side_right]
    type = SideValueSampler
    boundary = 'right'
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
  [horizontal_center]
    type = LineValueSampler
    start_point = '${fparse 0.01 * side_length} ${fparse 0.499 * side_length} 0'
    end_point = '${fparse 0.99 * side_length} ${fparse 0.499 * side_length} 0'
    num_points = ${Mesh/gen/nx}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'x'
    execute_on = 'timestep_end'
  []
  [vertical_center]
    type = LineValueSampler
    start_point = '${fparse 0.499 * side_length} ${fparse 0.01 * side_length} 0'
    end_point = '${fparse 0.499 * side_length} ${fparse 0.99 * side_length} 0'
    num_points =  ${Mesh/gen/ny}
    variable = 'vel_x vel_y pressure TKE TKED'
    sort_by = 'y'
    execute_on = 'timestep_end'
  []
[]