LCOV - code coverage report
Current view: top level - src/materials - ADComputeFiniteStrain.C (source / functions) Hit Total Coverage
Test: idaholab/moose solid_mechanics: #31613 (c7d555) with base 7323e9 Lines: 96 101 95.0 %
Date: 2025-11-06 14:18:25 Functions: 12 12 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://mooseframework.inl.gov
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #include "ADComputeFiniteStrain.h"
      11             : #include "RankTwoTensor.h"
      12             : #include "RankFourTensor.h"
      13             : #include "SymmetricRankTwoTensor.h"
      14             : #include "SymmetricRankFourTensor.h"
      15             : 
      16             : #include "libmesh/quadrature.h"
      17             : #include "libmesh/utility.h"
      18             : 
      19             : registerMooseObject("SolidMechanicsApp", ADComputeFiniteStrain);
      20             : registerMooseObject("SolidMechanicsApp", ADSymmetricFiniteStrain);
      21             : 
      22             : template <typename R2, typename R4>
      23             : MooseEnum
      24        3328 : ADComputeFiniteStrainTempl<R2, R4>::decompositionType()
      25             : {
      26        6656 :   return MooseEnum("TaylorExpansion EigenSolution", "TaylorExpansion");
      27             : }
      28             : 
      29             : template <typename R2, typename R4>
      30             : InputParameters
      31        3328 : ADComputeFiniteStrainTempl<R2, R4>::validParams()
      32             : {
      33             :   InputParameters params = ADComputeIncrementalStrainBase::validParams();
      34        3328 :   params.addClassDescription(
      35             :       "Compute a strain increment and rotation increment for finite strains.");
      36        6656 :   params.addParam<MooseEnum>("decomposition_method",
      37             :                              ADComputeFiniteStrainTempl<R2, R4>::decompositionType(),
      38             :                              "Methods to calculate the strain and rotation increments");
      39        3328 :   return params;
      40           0 : }
      41             : 
      42             : template <typename R2, typename R4>
      43        2496 : ADComputeFiniteStrainTempl<R2, R4>::ADComputeFiniteStrainTempl(const InputParameters & parameters)
      44             :   : ADComputeIncrementalStrainBaseTempl<R2>(parameters),
      45        2496 :     _Fhat(this->_fe_problem.getMaxQps()),
      46        2496 :     _decomposition_method(
      47        4992 :         this->template getParam<MooseEnum>("decomposition_method").template getEnum<DecompMethod>())
      48             : {
      49        2496 : }
      50             : 
      51             : template <typename R2, typename R4>
      52             : void
      53     1492042 : ADComputeFiniteStrainTempl<R2, R4>::computeProperties()
      54             : {
      55     1492042 :   ADRankTwoTensor ave_Fhat;
      56    12785918 :   for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
      57             :   {
      58             :     // Deformation gradient
      59    11293876 :     auto A = ADRankTwoTensor::initializeFromRows(
      60    11293876 :         (*_grad_disp[0])[_qp], (*_grad_disp[1])[_qp], (*_grad_disp[2])[_qp]);
      61             : 
      62             :     // Old Deformation gradient
      63    11293876 :     auto Fbar = ADRankTwoTensor::initializeFromRows(
      64    11293876 :         (*_grad_disp_old[0])[_qp], (*_grad_disp_old[1])[_qp], (*_grad_disp_old[2])[_qp]);
      65             : 
      66             :     // A = gradU - gradUold
      67    11293876 :     A -= Fbar;
      68             : 
      69             :     // Fbar = ( I + gradUold)
      70    11293876 :     Fbar.addIa(1.0);
      71             : 
      72             :     // Incremental deformation gradient _Fhat = I + A Fbar^-1
      73    11293876 :     _Fhat[_qp] = A * Fbar.inverse();
      74    11293876 :     _Fhat[_qp].addIa(1.0);
      75             : 
      76             :     // Calculate average _Fhat for volumetric locking correction
      77    11293876 :     if (_volumetric_locking_correction)
      78     6617616 :       ave_Fhat += _Fhat[_qp] * _JxW[_qp] * _coord[_qp];
      79             :   }
      80             : 
      81     1492042 :   if (_volumetric_locking_correction)
      82      827202 :     ave_Fhat /= _current_elem_volume;
      83             : 
      84     1492042 :   const auto ave_Fhat_det = ave_Fhat.det();
      85    12785912 :   for (_qp = 0; _qp < _qrule->n_points(); ++_qp)
      86             :   {
      87             :     // Finalize volumetric locking correction
      88    11293872 :     if (_volumetric_locking_correction)
      89             :     {
      90             :       using std::cbrt;
      91    13235232 :       _Fhat[_qp] *= cbrt(ave_Fhat_det / _Fhat[_qp].det());
      92             :     }
      93             : 
      94    11293872 :     computeQpStrain();
      95             :   }
      96     1492040 : }
      97             : 
      98             : template <typename R2, typename R4>
      99             : void
     100    13716816 : ADComputeFiniteStrainTempl<R2, R4>::computeQpStrain()
     101             : {
     102    13716816 :   ADR2 total_strain_increment;
     103             : 
     104             :   // two ways to calculate these increments: TaylorExpansion(default) or EigenSolution
     105    13716816 :   computeQpIncrements(total_strain_increment, _rotation_increment[_qp]);
     106             : 
     107    13716814 :   _strain_increment[_qp] = total_strain_increment;
     108             : 
     109             :   // Remove the eigenstrain increment
     110    13716814 :   this->subtractEigenstrainIncrementFromStrain(_strain_increment[_qp]);
     111             : 
     112    13716814 :   if (_dt > 0)
     113    13624226 :     _strain_rate[_qp] = _strain_increment[_qp] / _dt;
     114             :   else
     115       92588 :     _strain_rate[_qp].zero();
     116             : 
     117             :   // Update strain in intermediate configuration
     118    13716814 :   _mechanical_strain[_qp] = _mechanical_strain_old[_qp] + _strain_increment[_qp];
     119    13716814 :   _total_strain[_qp] = _total_strain_old[_qp] + total_strain_increment;
     120             : 
     121             :   // Rotate strain to current configuration
     122    13716814 :   _mechanical_strain[_qp].rotate(_rotation_increment[_qp]);
     123    13716814 :   _total_strain[_qp].rotate(_rotation_increment[_qp]);
     124             : 
     125    13716814 :   if (_global_strain)
     126           0 :     _total_strain[_qp] += (*_global_strain)[_qp];
     127    13716814 : }
     128             : 
     129             : template <typename R2, typename R4>
     130             : void
     131    13716816 : ADComputeFiniteStrainTempl<R2, R4>::computeQpIncrements(ADR2 & total_strain_increment,
     132             :                                                         ADRankTwoTensor & rotation_increment)
     133             : {
     134             :   using std::sqrt;
     135             : 
     136    13716816 :   switch (_decomposition_method)
     137             :   {
     138    13711912 :     case DecompMethod::TaylorExpansion:
     139             :     {
     140             :       // inverse of _Fhat
     141    13711912 :       const ADRankTwoTensor invFhat = _Fhat[_qp].inverse();
     142             : 
     143             :       // A = I - _Fhat^-1
     144    13711912 :       ADRankTwoTensor A(ADRankTwoTensor::initIdentity);
     145    13711912 :       A -= invFhat;
     146             : 
     147             :       // Cinv - I = A A^T - (A + A^T);
     148    13711912 :       ADR2 Cinv_I = ADR2::timesTranspose(A) - ADR2::plusTranspose(A);
     149             : 
     150             :       // strain rate D from Taylor expansion, Chat = (-1/2(Chat^-1 - I) + 1/4*(Chat^-1 - I)^2 + ...
     151    27423824 :       total_strain_increment = -Cinv_I * 0.5 + Cinv_I.square() * 0.25;
     152             : 
     153             :       const ADReal a[3] = {invFhat(1, 2) - invFhat(2, 1),
     154             :                            invFhat(2, 0) - invFhat(0, 2),
     155             :                            invFhat(0, 1) - invFhat(1, 0)};
     156             : 
     157    13711912 :       const auto q = (a[0] * a[0] + a[1] * a[1] + a[2] * a[2]) / 4.0;
     158    13711912 :       const auto trFhatinv_1 = invFhat.trace() - 1.0;
     159    27423824 :       const auto p = trFhatinv_1 * trFhatinv_1 / 4.0;
     160             : 
     161             :       // cos theta_a
     162    13711912 :       const ADReal C1_squared =
     163    27423824 :           p + 3.0 * Utility::pow<2>(p) * (1.0 - (p + q)) / Utility::pow<2>(p + q) -
     164    41135736 :           2.0 * Utility::pow<3>(p) * (1.0 - (p + q)) / Utility::pow<3>(p + q);
     165    13711912 :       if (C1_squared <= 0.0)
     166           0 :         mooseException(
     167             :             "Cannot take square root of a number less than or equal to zero in the calculation of "
     168             :             "C1 for the Rashid approximation for the rotation tensor. This zero or negative number "
     169             :             "may occur when elements become heavily distorted.");
     170             : 
     171    13711912 :       const ADReal C1 = sqrt(C1_squared);
     172             : 
     173             :       ADReal C2;
     174    13711912 :       if (q > 0.01)
     175             :         // (1-cos theta_a)/4q
     176       76392 :         C2 = (1.0 - C1) / (4.0 * q);
     177             :       else
     178             :         // alternate form for small q
     179    54745792 :         C2 = 0.125 + q * 0.03125 * (Utility::pow<2>(p) - 12.0 * (p - 1.0)) / Utility::pow<2>(p) +
     180    13686448 :              Utility::pow<2>(q) * (p - 2.0) * (Utility::pow<2>(p) - 10.0 * p + 32.0) /
     181             :                  Utility::pow<3>(p) +
     182             :              Utility::pow<3>(q) *
     183    54745792 :                  (1104.0 - 992.0 * p + 376.0 * Utility::pow<2>(p) - 72.0 * Utility::pow<3>(p) +
     184    13686448 :                   5.0 * Utility::pow<4>(p)) /
     185    27372896 :                  (512.0 * Utility::pow<4>(p));
     186             : 
     187    13711914 :       const ADReal C3_test =
     188    27423824 :           (p * q * (3.0 - q) + Utility::pow<3>(p) + Utility::pow<2>(q)) / Utility::pow<3>(p + q);
     189    13711912 :       if (C3_test <= 0.0)
     190           2 :         mooseException(
     191             :             "Cannot take square root of a number less than or equal to zero in the calculation of "
     192             :             "C3_test for the Rashid approximation for the rotation tensor. This zero or negative "
     193             :             "number may occur when elements become heavily distorted.");
     194    27423820 :       const ADReal C3 = 0.5 * sqrt(C3_test); // sin theta_a/(2 sqrt(q))
     195             : 
     196             :       // Calculate incremental rotation. Note that this value is the transpose of that from Rashid,
     197             :       // 93, so we transpose it before storing
     198    13711910 :       ADRankTwoTensor R_incr;
     199    13711910 :       R_incr.addIa(C1);
     200    54847640 :       for (unsigned int i = 0; i < 3; ++i)
     201   164542920 :         for (unsigned int j = 0; j < 3; ++j)
     202   246814380 :           R_incr(i, j) += C2 * a[i] * a[j];
     203             : 
     204    13711910 :       R_incr(0, 1) += C3 * a[2];
     205    13711910 :       R_incr(0, 2) -= C3 * a[1];
     206    13711910 :       R_incr(1, 0) -= C3 * a[2];
     207    13711910 :       R_incr(1, 2) += C3 * a[0];
     208    13711910 :       R_incr(2, 0) += C3 * a[1];
     209    13711910 :       R_incr(2, 1) -= C3 * a[0];
     210             : 
     211    27423822 :       rotation_increment = R_incr.transpose();
     212             :       break;
     213             :     }
     214             : 
     215        4904 :     case DecompMethod::EigenSolution:
     216             :     {
     217             :       // Add a small perturbation to F for the case when F=I, which occurs with no deformation,
     218             :       // which commonly occurs in initialization. The perturbation to F does not affect the computed
     219             :       // stress, but prevents a singularity in the AD-computed material Jacobian.
     220        4904 :       if (this->_fe_problem.currentlyComputingJacobian() &&
     221        5832 :           _Fhat[_qp] == ADRankTwoTensor::Identity())
     222         264 :         _Fhat[_qp] +=
     223         528 :             ADRankTwoTensor(0.0, 5.0e-13, 5.0e-13, 5.0e-13, 0.0, 5.0e-13, 5.0e-13, 5.0e-13, 0.0);
     224             : 
     225        4904 :       FADR2 Chat = ADR2::transposeTimes(_Fhat[_qp]);
     226        4904 :       FADR2 Uhat = MathUtils::sqrt(Chat);
     227        9808 :       rotation_increment = _Fhat[_qp] * Uhat.inverse().template get<ADRankTwoTensor>();
     228        9808 :       total_strain_increment = MathUtils::log(Uhat).template get<ADR2>();
     229             :       break;
     230             :     }
     231             : 
     232           0 :     default:
     233           0 :       mooseError("ADComputeFiniteStrain Error: Pass valid decomposition type: TaylorExpansion or "
     234             :                  "EigenSolution.");
     235             :   }
     236    13716814 : }
     237             : 
     238             : template class ADComputeFiniteStrainTempl<RankTwoTensor, RankFourTensor>;
     239             : template class ADComputeFiniteStrainTempl<SymmetricRankTwoTensor, SymmetricRankFourTensor>;

Generated by: LCOV version 1.14