Line data Source code
1 : //* This file is part of the MOOSE framework 2 : //* https://mooseframework.inl.gov 3 : //* 4 : //* All rights reserved, see COPYRIGHT for full restrictions 5 : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT 6 : //* 7 : //* Licensed under LGPL 2.1, please see LICENSE for details 8 : //* https://www.gnu.org/licenses/lgpl-2.1.html 9 : 10 : // Rogers-Stallybrass-Clements version of effective saturation of water phase as a function of 11 : // pressure, and derivatives wrt that pressure. 12 : // This is mostly useful for 2phase, not single phase, models. 13 : // valid for residual saturations = 0, and viscosityOil = 2*viscosityWater. (the "2" is important 14 : // here!). 15 : // C Rogers, MP Stallybrass and DL Clements "On two phase filtration under gravity and with boundary 16 : // infiltration: application of a Backlund transformation" Nonlinear Analysis Theory Methods and 17 : // Applications 7 (1983) 785--799. 18 : // 19 : #include "RichardsSeff1RSC.h" 20 : 21 : registerMooseObject("RichardsApp", RichardsSeff1RSC); 22 : 23 : InputParameters 24 13 : RichardsSeff1RSC::validParams() 25 : { 26 13 : InputParameters params = RichardsSeff::validParams(); 27 26 : params.addParam<Real>("oil_viscosity", 28 : "Viscosity of oil (gas) phase. It is assumed this is " 29 : "double the water-phase viscosity. (Note that this " 30 : "effective saturation is mostly useful for 2-phase, not " 31 : "single-phase.)"); 32 26 : params.addParam<Real>("scale_ratio", 33 : "This is porosity/permeability/beta^2, where beta may be " 34 : "chosen by the user. It has dimensions [time]"); 35 26 : params.addParam<Real>("shift", "effective saturation is a function of (Pc - shift)"); 36 13 : params.addClassDescription( 37 : "Rogers-Stallybrass-Clements version of effective saturation for the water phase, valid for " 38 : "residual saturations = 0, and viscosityOil = 2*viscosityWater. seff_water = 1/Sqrt(1 + " 39 : "Exp((Pc - shift)/scale)), where scale = 0.25*scale_ratio*oil_viscosity. Note that this " 40 : "effective saturation is mostly useful for 2-phase, not single-phase."); 41 13 : return params; 42 0 : } 43 : 44 6 : RichardsSeff1RSC::RichardsSeff1RSC(const InputParameters & parameters) 45 : : RichardsSeff(parameters), 46 6 : _oil_viscosity(getParam<Real>("oil_viscosity")), 47 12 : _scale_ratio(getParam<Real>("scale_ratio")), 48 12 : _shift(getParam<Real>("shift")), 49 6 : _scale(0.25 * _scale_ratio * _oil_viscosity) 50 : { 51 6 : } 52 : 53 : Real 54 606 : RichardsSeff1RSC::seff(std::vector<const VariableValue *> p, unsigned int qp) const 55 : { 56 606 : Real pc = -(*p[0])[qp]; 57 606 : return RichardsSeffRSC::seff(pc, _shift, _scale); 58 : } 59 : 60 : void 61 606 : RichardsSeff1RSC::dseff(std::vector<const VariableValue *> p, 62 : unsigned int qp, 63 : std::vector<Real> & result) const 64 : { 65 606 : Real pc = -(*p[0])[qp]; 66 606 : result[0] = -RichardsSeffRSC::dseff(pc, _shift, _scale); 67 606 : } 68 : 69 : void 70 606 : RichardsSeff1RSC::d2seff(std::vector<const VariableValue *> p, 71 : unsigned int qp, 72 : std::vector<std::vector<Real>> & result) const 73 : { 74 606 : Real pc = -(*p[0])[qp]; 75 606 : result[0][0] = RichardsSeffRSC::d2seff(pc, _shift, _scale); 76 606 : }