LCOV - code coverage report
Current view: top level - src/materials - GBAnisotropy.C (source / functions) Hit Total Coverage
Test: idaholab/moose phase_field: #31405 (292dce) with base fef103 Lines: 33 34 97.1 %
Date: 2025-09-04 07:55:36 Functions: 2 2 100.0 %
Legend: Lines: hit not hit

          Line data    Source code
       1             : //* This file is part of the MOOSE framework
       2             : //* https://mooseframework.inl.gov
       3             : //*
       4             : //* All rights reserved, see COPYRIGHT for full restrictions
       5             : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT
       6             : //*
       7             : //* Licensed under LGPL 2.1, please see LICENSE for details
       8             : //* https://www.gnu.org/licenses/lgpl-2.1.html
       9             : 
      10             : #include "GBAnisotropy.h"
      11             : 
      12             : registerMooseObject("PhaseFieldApp", GBAnisotropy);
      13             : 
      14             : InputParameters
      15         141 : GBAnisotropy::validParams()
      16             : {
      17         141 :   InputParameters params = GBAnisotropyBase::validParams();
      18         141 :   params.addClassDescription(
      19             :       "A material to compute anisotropic grain boundary energies and mobilities.");
      20         282 :   params.addRequiredParam<Real>("wGB", "Diffuse GB width in nm");
      21         141 :   return params;
      22           0 : }
      23             : 
      24         108 : GBAnisotropy::GBAnisotropy(const InputParameters & parameters)
      25         216 :   : GBAnisotropyBase(parameters), _wGB(getParam<Real>("wGB"))
      26             : {
      27             :   Real sigma_init;
      28             :   Real g2 = 0.0;
      29             :   Real f_interf = 0.0;
      30             :   Real a_0 = 0.75;
      31             :   Real a_star = 0.0;
      32             :   Real kappa_star = 0.0;
      33             :   Real gamma_star = 0.0;
      34             :   Real y = 0.0; // 1/gamma
      35             :   Real yyy = 0.0;
      36             : 
      37             :   Real sigma_big = 0.0;
      38             :   Real sigma_small = 0.0;
      39             : 
      40         288 :   for (unsigned int m = 0; m < _op_num - 1; ++m)
      41         432 :     for (unsigned int n = m + 1; n < _op_num; ++n)
      42             :     {
      43             :       // Convert units of mobility and energy
      44         252 :       _sigma[m][n] *= _JtoeV * (_length_scale * _length_scale); // eV/nm^2
      45             : 
      46         252 :       _mob[m][n] *= _time_scale / (_JtoeV * (_length_scale * _length_scale * _length_scale *
      47             :                                              _length_scale)); // Convert to nm^4/(eV*ns);
      48             : 
      49         252 :       if (m == 0 && n == 1)
      50             :       {
      51         108 :         sigma_big = _sigma[m][n];
      52             :         sigma_small = sigma_big;
      53             :       }
      54             : 
      55         144 :       else if (_sigma[m][n] > sigma_big)
      56             :         sigma_big = _sigma[m][n];
      57             : 
      58         144 :       else if (_sigma[m][n] < sigma_small)
      59             :         sigma_small = _sigma[m][n];
      60             :     }
      61             : 
      62         108 :   sigma_init = (sigma_big + sigma_small) / 2.0;
      63         108 :   _mu_qp = 6.0 * sigma_init / _wGB;
      64             : 
      65         288 :   for (unsigned int m = 0; m < _op_num - 1; ++m)
      66         432 :     for (unsigned int n = m + 1; n < _op_num; ++n) // m<n
      67             :     {
      68             : 
      69             :       a_star = a_0;
      70             :       a_0 = 0.0;
      71             : 
      72        1440 :       while (std::abs(a_0 - a_star) > 1.0e-9)
      73             :       {
      74             :         a_0 = a_star;
      75         468 :         kappa_star = a_0 * _wGB * _sigma[m][n];
      76         468 :         g2 = _sigma[m][n] * _sigma[m][n] / (kappa_star * _mu_qp);
      77         468 :         y = -5.288 * g2 * g2 * g2 * g2 - 0.09364 * g2 * g2 * g2 + 9.965 * g2 * g2 - 8.183 * g2 +
      78             :             2.007;
      79         468 :         gamma_star = 1 / y;
      80         468 :         yyy = y * y * y;
      81         468 :         f_interf = 0.05676 * yyy * yyy - 0.2924 * yyy * y * y + 0.6367 * yyy * y - 0.7749 * yyy +
      82         468 :                    0.6107 * y * y - 0.4324 * y + 0.2792;
      83         468 :         a_star = std::sqrt(f_interf / g2);
      84             :       }
      85             : 
      86         252 :       _kappa_gamma[m][n] = kappa_star; // upper triangle stores the discrete set of kappa values
      87         252 :       _kappa_gamma[n][m] = gamma_star; // lower triangle stores the discrete set of gamma values
      88             : 
      89         252 :       _a_g2[m][n] = a_star; // upper triangle stores "a" data.
      90         252 :       _a_g2[n][m] = g2;     // lower triangle stores "g2" data.
      91             :     }
      92         108 : }

Generated by: LCOV version 1.14