Line data Source code
1 : //* This file is part of the MOOSE framework 2 : //* https://mooseframework.inl.gov 3 : //* 4 : //* All rights reserved, see COPYRIGHT for full restrictions 5 : //* https://github.com/idaholab/moose/blob/master/COPYRIGHT 6 : //* 7 : //* Licensed under LGPL 2.1, please see LICENSE for details 8 : //* https://www.gnu.org/licenses/lgpl-2.1.html 9 : 10 : #include "HeatFluxBaseBC.h" 11 : #include "HeatFluxFromHeatStructureBaseUserObject.h" 12 : #include "THMIndicesVACE.h" 13 : #include "Assembly.h" 14 : #include "NonlinearSystemBase.h" 15 : 16 : InputParameters 17 0 : HeatFluxBaseBC::validParams() 18 : { 19 0 : InputParameters params = IntegratedBC::validParams(); 20 0 : params.addRequiredParam<UserObjectName>( 21 : "q_uo", "The name of the user object that computes the heat flux"); 22 0 : params.addRequiredParam<Real>("P_hs_unit", "Perimeter of a single unit of heat structure"); 23 0 : params.addRequiredParam<unsigned int>("n_unit", "Number of units of heat structure"); 24 0 : params.addRequiredParam<bool>("hs_coord_system_is_cylindrical", 25 : "Is the heat structure coordinate system cylindrical?"); 26 0 : params.addClassDescription("Base class for heat flux boundary conditions"); 27 0 : return params; 28 0 : } 29 : 30 0 : HeatFluxBaseBC::HeatFluxBaseBC(const InputParameters & parameters) 31 : : IntegratedBC(parameters), 32 0 : _phi_neighbor(_assembly.phiNeighbor(_var)), 33 0 : _q_uo(getUserObject<HeatFluxFromHeatStructureBaseUserObject>("q_uo")), 34 0 : _P_hs_unit(getParam<Real>("P_hs_unit")), 35 0 : _n_unit(getParam<unsigned int>("n_unit")), 36 0 : _hs_coord_system_is_cylindrical(getParam<bool>("hs_coord_system_is_cylindrical")), 37 0 : _hs_coord(_hs_coord_system_is_cylindrical ? _P_hs_unit : 1.0), 38 0 : _hs_scale(-_hs_coord / (_n_unit * _P_hs_unit)) 39 : { 40 0 : } 41 : 42 : void 43 0 : HeatFluxBaseBC::initialSetup() 44 : { 45 0 : _off_diag_var_nums = getOffDiagVariableNumbers(); 46 0 : } 47 : 48 : void 49 0 : HeatFluxBaseBC::computeJacobian() 50 : { 51 0 : IntegratedBC::computeJacobian(); 52 0 : } 53 : 54 : void 55 0 : HeatFluxBaseBC::computeOffDiagJacobian(const unsigned int jvar_num) 56 : { 57 0 : IntegratedBC::computeOffDiagJacobian(jvar_num); 58 : 59 0 : if (jvar_num == _var.number()) 60 : { 61 : // when doing the diagonal part, also take care of the off-diag jacobian 62 : // wrt the heat structure side 63 0 : std::vector<dof_id_type> idofs = _var.dofIndices(); 64 : 65 0 : const dof_id_type & pipe_elem_id = _q_uo.getNearestElem(_current_elem->id()); 66 0 : const Elem * neighbor = _mesh.elemPtr(pipe_elem_id); 67 : 68 0 : _assembly.setCurrentNeighborSubdomainID(neighbor->subdomain_id()); 69 0 : _assembly.reinitNeighborAtPhysical(neighbor, _q_point.stdVector()); 70 : 71 0 : for (std::size_t i = 0; i < _off_diag_var_nums.size(); i++) 72 : { 73 0 : unsigned int jvar_num = _off_diag_var_nums[i]; 74 : MooseVariableFEBase & jvar = 75 0 : _fe_problem.getNonlinearSystemBase(_sys.number()).getVariable(_tid, jvar_num); 76 0 : jvar.prepareNeighbor(); 77 0 : _assembly.copyNeighborShapes(jvar_num); 78 : 79 0 : auto & jdofs = jvar.dofIndicesNeighbor(); 80 : 81 0 : DenseMatrix<Number> Ke(_test.size(), jvar.phiNeighborSize()); 82 0 : for (_qp = 0; _qp < _qrule->n_points(); _qp++) 83 0 : for (_i = 0; _i < _test.size(); _i++) 84 0 : for (_j = 0; _j < jvar.phiNeighborSize(); _j++) 85 0 : Ke(_i, _j) += _JxW[_qp] * _coord[_qp] * computeQpOffDiagJacobianNeighbor(jvar_num); 86 : 87 0 : addJacobian(_assembly, Ke, idofs, jdofs, _var.scalingFactor()); 88 0 : } 89 : } 90 0 : }