Concrete ASR Microcracking Damage

Scalar damage model based on ASR extent

Description

The ConcreteASRMicrocrackingDamage model computes a scalar damage index that increases with the extent of alkali-silica reaction (ASR) according to the model of Saouma and Perotti (2006): where is the damage induced by the ASR, is the residual fractional value of the elastic modulus when the concrete has fully reacted, is the time, is the temperature, and is the extent of ASR reaction, which goes from 0 (no reaction) to 1 (fully reacted). can be set using the residual_youngs_modulus_fraction input parameter.

Implementation and Usage

This model only computes a scalar damage index, and relies on the ConcreteASREigenstrain model to compute the ASR reaction extent , which is stored in a property named ASR_extent, so it must be used in conjunction with that model. In order for the damage to be applied, the stress needs to be computed using a ComputeDamageStress stress calculator.

Example Input Syntax

[Materials<<<{"href": "../../syntax/Materials/index.html"}>>>]
  [ASR_damage_concrete]
    type = ConcreteASRMicrocrackingDamage<<<{"description": "Scalar damage model based on ASR extent", "href": "ConcreteASRMicrocrackingDamage.html"}>>>
    block<<<{"description": "The list of blocks (ids or names) that this object will be applied"}>>> = 1
    residual_youngs_modulus_fraction<<<{"description": "Residual fraction of youngs_modulus at full ASR reaction"}>>> = 0.5
  []
[]
(test/tests/concrete_ASR_swelling/asr_confined.i)

Input Parameters

  • residual_youngs_modulus_fractionResidual fraction of youngs_modulus at full ASR reaction

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Residual fraction of youngs_modulus at full ASR reaction

Required Parameters

  • base_nameOptional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

    C++ Type:std::string

    Controllable:No

    Description:Optional parameter that allows the user to define multiple mechanics material systems on the same block, i.e. for multiple phases

  • blockThe list of blocks (ids or names) that this object will be applied

    C++ Type:std::vector<SubdomainName>

    Controllable:No

    Description:The list of blocks (ids or names) that this object will be applied

  • boundaryThe list of boundaries (ids or names) from the mesh where this object applies

    C++ Type:std::vector<BoundaryName>

    Controllable:No

    Description:The list of boundaries (ids or names) from the mesh where this object applies

  • constant_onNONEWhen ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

    Default:NONE

    C++ Type:MooseEnum

    Options:NONE, ELEMENT, SUBDOMAIN

    Controllable:No

    Description:When ELEMENT, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps.When SUBDOMAIN, MOOSE will only call computeQpProperties() for the 0th quadrature point, and then copy that value to the other qps. Evaluations on element qps will be skipped

  • damage_index_namedamage_indexname of the material property where the damage index is stored

    Default:damage_index

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:name of the material property where the damage index is stored

  • declare_suffixAn optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any declared properties. The suffix will be prepended with a '_' character.

  • maximum_damage1Maximum value allowed for damage index

    Default:1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Maximum value allowed for damage index

  • maximum_damage_increment0.1maximum damage increment allowed for simulations with adaptive time step

    Default:0.1

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:maximum damage increment allowed for simulations with adaptive time step

  • residual_stiffness_fraction1e-08Minimum fraction of original material stiffness retained for fully damaged material (when damage_index=1)

    Default:1e-08

    C++ Type:double

    Unit:(no unit assumed)

    Controllable:No

    Description:Minimum fraction of original material stiffness retained for fully damaged material (when damage_index=1)

  • use_old_damageFalseWhether to use the damage index from the previous step in the stress computation

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether to use the damage index from the previous step in the stress computation

Optional Parameters

  • control_tagsAdds user-defined labels for accessing object parameters via control logic.

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:Adds user-defined labels for accessing object parameters via control logic.

  • enableTrueSet the enabled status of the MooseObject.

    Default:True

    C++ Type:bool

    Controllable:Yes

    Description:Set the enabled status of the MooseObject.

  • implicitTrueDetermines whether this object is calculated using an implicit or explicit form

    Default:True

    C++ Type:bool

    Controllable:No

    Description:Determines whether this object is calculated using an implicit or explicit form

  • seed0The seed for the master random number generator

    Default:0

    C++ Type:unsigned int

    Controllable:No

    Description:The seed for the master random number generator

  • use_displaced_meshFalseWhether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:Whether or not this object should use the displaced mesh for computation. Note that in the case this is true but no displacements are provided in the Mesh block the undisplaced mesh will still be used.

Advanced Parameters

  • output_propertiesList of material properties, from this material, to output (outputs must also be defined to an output type)

    C++ Type:std::vector<std::string>

    Controllable:No

    Description:List of material properties, from this material, to output (outputs must also be defined to an output type)

  • outputsnone Vector of output names where you would like to restrict the output of variables(s) associated with this object

    Default:none

    C++ Type:std::vector<OutputName>

    Controllable:No

    Description:Vector of output names where you would like to restrict the output of variables(s) associated with this object

Outputs Parameters

  • prop_getter_suffixAn optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

    C++ Type:MaterialPropertyName

    Unit:(no unit assumed)

    Controllable:No

    Description:An optional suffix parameter that can be appended to any attempt to retrieve/get material properties. The suffix will be prepended with a '_' character.

  • use_interpolated_stateFalseFor the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

    Default:False

    C++ Type:bool

    Controllable:No

    Description:For the old and older state use projected material properties interpolated at the quadrature points. To set up projection use the ProjectedStatefulMaterialStorageAction.

Material Property Retrieval Parameters

Input Files

References

  1. Victor Saouma and Luigi Perotti. Constitutive model for alkali-aggregate reactions. ACI Materials Journal, 2006. doi:10.14359/15853.[BibTeX]