- design_functionThe desired value to reach.C++ Type:FunctionName Unit:(no unit assumed) Controllable:No Description:The desired value to reach. 
- observed_valueThe name of the Postprocessor that contains the observed value.C++ Type:PostprocessorName Unit:(no unit assumed) Controllable:No Description:The name of the Postprocessor that contains the observed value. 
ScaledAbsDifferenceDRLRewardFunction
Evaluates a scaled absolute difference reward function for a process which is controlled by a Deep Reinforcement Learning based surrogate.
Overview
Function describing the reward of for a Deep Reinforcement Learning algorithm in the form of:
where and constants can be determined by the user. Furthermore, is a measured data, typically supplied by a postprocessor. For an example on how to use it in a DRL setting, see LibtorchDRLControlTrainer.
Input Parameters
- c1101st coefficient in the reward function.Default:10 C++ Type:double Unit:(no unit assumed) Controllable:No Description:1st coefficient in the reward function. 
- c212nd coefficient in the reward function.Default:1 C++ Type:double Unit:(no unit assumed) Controllable:No Description:2nd coefficient in the reward function. 
Optional Parameters
- control_tagsAdds user-defined labels for accessing object parameters via control logic.C++ Type:std::vector<std::string> Controllable:No Description:Adds user-defined labels for accessing object parameters via control logic. 
- enableTrueSet the enabled status of the MooseObject.Default:True C++ Type:bool Controllable:No Description:Set the enabled status of the MooseObject.